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Abstract 
 
Recently, lower Leonard and upper Wolfcamp (operational Wolfcamp A and B) strata have become targets for horizontal 
drilling and hydraulic fracturing in the southern Midland Basin. High-resolution hand-held XRF, CT scan, and rebound hammer 
(unconfined compressive rock strength) analyses were collected from core from these intervals. These basinal rocks can be 
divided into four facies: (1) siliceous mudrock, (2) calcareous mudrock, (3) carbonate-clast conglomerate, and (4) skeletal 
wackestone/packstone. These facies are interpreted as hemipelagic deposits and sediment density-flow deposits reworked, 
locally, by bottom currents. Facies thickness ranges from inches to feet. Three scales of cyclicity are observed: (1) cycles of 
alternating sediment density-flow and hemipelagic deposits defined by 3-inch-spaced XRF elemental data (Ca, Al) (1-5 ft thick), 
(2) sets of repeating cycles defined by gamma ray log (low gamma = high carbonate, high gamma = high clay) (10s of ft thick), 
and (3) megacycles of dominantly calcareous or siliceous (defined by facies) cycle sets (10s-100s of ft thick). 
 
The dominant facies, siliceous and calcareous mudrock, have few sedimentary structures, contain relatively high total organic 
carbon (TOC) (up to 6.3 percent), rare burrows, and common phosphatic nodules and pyrite framboids. Coarser-grained 
conglomerates and wackestone/packstones have current-related structures, locally, contain low TOC, few phosphatic nodules, 
and rare pyrite framboids. TOC varies widely by facies over small vertical distances, varies directly with geochemical proxies 
for marine productivity (Ni, Cu, Zn) and siliciclastic sediment (Al, Si, Ti), and varies inversely with carbonate (Ca, total 
inorganic carbon). Collectively, these factors indicate that fine-grained sediments accumulated slowly over long periods under 
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anoxic conditions, but carbonate-rich, coarse-grained sediments were deposited rapidly on the basin floor and did not include 
significant marine or terrestrial organic matter. 
 
In the northern Reagan County study area, conglomerates up to 9 ft thick are common in the upper Wolfcamp, but absent in the 
lower Leonard, where thinner, finer-grained wackestone/packstones prevail. The difference in thickness of carbonate-rich beds 
in these two formations may affect vertical fracture propagation. Measurements of unconfined compressive strength show that 
most wackestone/packstones are stronger than almost all mudrocks. Even so, mineralized natural fractures are present in all 
facies. Close vertical proximity of mature organic matter (Type II-III kerogen, calculated Ro = 0.67-1.07, Tmax>438) in 
mudrock and thin, more brittle beds (brittle-ductile couplets) may explain the appeal of basinal Wolfcamp and Leonard strata as 
targets for horizontal well completion and fracture stimulation. S2/TOC data from the study cores identify zones of potential 
hydrocarbon production, which correlate with horizons that have produced 179-460 barrels of oil equivalent/day (30-day initial 
production) in nearby fields. 
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High-Resolution Core Studies of Wolfcamp/Leonard Basinal Facies, Southern Midland Basin, Texas
 Part 1: Context of High-Resolution Study 

Robert W. Baumgardner, Jr.,
 H. Scott Hamlin, 

and Harry D. Rowe

Stratigraphic column and representative 
wireline logs from O. L. Greer 2 well
show divisions of Wolfcamp Formation
and lower Leonard, along with 
operational names.

Regional Setting, Stratigraphic Context, and Drilling Activity

Bureau of Economic Geology
Jackson School of Geosciences
The University of Texas at Austin

Background
 As the use of horizontal drilling and hydraulic fracturing has increased in
the Permian Basin, lower Permian basinal rocks in the southern Midland
Basin have become drilling targets. In this study, cores were analyzed
with a variety of techniques to characterize the facies, geochemistry, 
and rock strength of these economically important rocks.
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Horizontal drilling in the Wolfcamp has increased
dramatically in Reagan County since Feb. 2012.

Siliceous mudrock

Carbonate-clast conglomerate

XRD Mineralogy (wt %)
Clays Carb Q+F+P+A TOC

38.8 5.8 3.0
51.9 32.3 2.1

12.9 24.7 1.2
13.7

52.4

61.3
8.0 59.8 31.9 0.4

Lithofacies

103 samples from 3 wells
Clay, siliciclastics, and TOC highest in siliceous mudrock.
Carbonate highest in conglomerate and wackestone/packstone.
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Skeletal wackestone/packstone

Q+F+P+A = quartz, feldspar, pyrite, apatite
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Early Permian Paleogeography (275 Ma)

During early Permian time, the Midland Basin was
separated from open ocean by several intervening
basins and interconnecting channels, which
restricted water circulation and fostered basin
anoxia.

(Blakey, 2011)

Southern 

Shelf

The study area in northern Reagan County
is located near the center of the southern 
Midland Basin, an area of recent horizontal 
drilling and hydraulic fracturing.

(Hamlin and Baumgardner, 2012)
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Lithofacies based on core description
Siliceous mudrock
Calcareous mudrock
Carbonate-clast conglomerate
Skeletal wackestone-packstone

TOC is highest in siliceous mudrocks, which are interbedded with low-TOC, high-carbonate facies.
Laminations, phosphatic nodules, pyrite, and lack of burrows in fine-grained deposits indicate prevalence of anoxia
in accumulating sediment.
End of conglomerate deposition in early Leonard (uppermost conglomerate) suggests change in distance to source 
(relative sea-level change) or in carbonate production, compared to late Wolfcamp time.
Conglomerates and wackestone/packstones are interpreted as debrites and turbidites.
Mineralized natural fractures are present throughout the cored interval, even in mudrocks.

High GR responses generally correlate with siliceous mudrocks and high TOC content.

Core Description, Lithofacies, and Total Organic Carbon (TOC)

34% clay minerals
31.1% carbonate
32.0% Q+F+P+A*
  3.0% TOC

14.8% clay minerals
71.2% carbonate
12.9% Q+F+P+A*
  1.0% TOC

Carbonate-clast
conglomerate

  2.0% clay minerals
59.0% carbonate
39.0% Q+F+P+A*
  0.15% TOC

46.2% clay minerals
  4.8% carbonate
45.2% Q+F+P+A*
  3.7% TOC
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C. Photomicrograph of siliceous mudrock. Discontinuous
laminae composed of calcite and quartz grains. 
D. SEM image of siliceous mudrock shown in C. Quartz
(red) and calcite (blue) grains in clayey (green) matrix.
 
E. Photomicrograph of limestone (skeletal packstone) 
showing grain-to-grain contact and little clay. 
F. SEM image of limestone in E shows replacive quartz
(red) interlocking with calcite bioclast (blue).

C D

E F

20 μm

20 μm1.0 mm

1.0 mm

A: Rock strength (unconfined compress-
ive strength) decreases with Si content,
unlike Barnett shale (Jarvie, et al. 2007), 
because much Si is in, or associated with, 
clay minerals.
B: Rock strength increases with Ca content,
like Haynesville shale (Buller, et al., 2010).
 

Rock Strength: Strength Depends Directly on Ca Content

50% of limestones (a) are stronger
than 85-100% of other facies (b).
Naturally fractured rocks (red line)
have intermediate strength.

In comparison, rock strength in black
shales ranges from 27-47 MPa, in tight
grainstones ranges from 40-86 MPa
(Zahm and Enderlin, 2010).
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Three Levels of Cyclicity are Evident in Wireline Logs, Elemental Profiles, and Rock Strength (UCS)
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Conclusions
  XRF data provide detailed information about facies and controls on accumulation and preservation of
organic matter.
  Cycles represent repeated deposition of limestones (carbonate-rich wackestone/packstones) followed 
by upward-waning carbonate deposition, and finally, a return to ‘background’ siliciclastic deposition.
  Limestone (wackestone/packstone) deposition interrupted deposition of detrital quartz, clay minerals,
terrigenous sediment, and marine organic matter.
  Molybdenum concentrations suggest that redox conditions at the Permian seafloor were largely anoxic,
favoring preservation of organic matter, but redox conditions within limestones were less reducing. Conse-
quently, TOC levels change abruptly between limestones (low TOC) and hemipelagic sediments (high TOC).
  Rock strength (brittleness) is largely a function of calcite content. Most limestones are stronger than all
other facies.
  Recent horizontal drilling has targeted zones having high S2/TOC ratios, primarily siliceous mudrocks.
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High-resolution data (above) show close co-variation between
quartz (Si), clay (Al), terrigenous sediment (Ti), marine paleo-
productivity (Ni), reducing conditions (Mo), and TOC. 
Ca and rock strength (UCS), hence mechanical stratigraphy, 
co-vary closely, opposite to everything else.
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TOC and Rock Eval Data Identify Favorable Targets: Siliceous Mudrocks

Wireline gamma ray log, geochemical data, and rock strength (UCS) data reveal cycles at three scales.
Right to left: 1 -Cycles (right) are stacked packages of limestone (wackestone/packstones (SEE PART 1)
and increasingly siliceous mudrock. Note proximity of strong (brittle) and weak (ductile) rocks, which may
contribute to complexity of fracture networks. 2 -Cycles are grouped into cycle-sets (center) based on
correlation with nearby wells. 3 -Megacycles (left) are cycle-sets of predominantly calcareous or siliceous facies.
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Part 2: Mineralogy, Chemofacies, and Cyclicity Defined by XRF and Rock Strength Data

Principal Geochemical
Proxies from XRF Data:
Sedimentology
  Al, K = illite
  Si = quartz (Si not in illite)
  Ti = terrigenous sediment
  Ca = calcite
Paleoredox, paleoproductivity
  Cu, Ni, Zn = marine productivity
  Mo = reducing conditions
Others
  TOC (total organic carbon) = result of
productivity, reducing conditions, and
sedimentation rate/dilution

Cyclicity in the lower Leonard

Mixed

Wolfcamp

Objectives of High-Resolution XRF Study
  Lithofacies in the Wolfcamp/lower Leonard have
been identified on the basis of megascopic
description of core and mineralogy derived from
XRD. Chemofacies were defined using XRF data.
High-resolution XRF and rock strength data were
used to address questions regarding cyclicity, 
mechanical properties, and relationships between
paleoreducing conditions, terrigenous sediment,
and marine paleoproductivity.
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XRD data show that calcite, illite, and
quartz comprise about 80% of rocks
in the study section. So, these three
minerals describe most variation
therein. XRF data show that most Ca
is in calcite, most Al in illite. Most 
remaining Si is in quartz, providing 
basis for ternary diagram: % based
on molar ratio is normalized to 100% 
(after Algeo et al., 2007).
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*limestones are skeletal wacke-
stone/packstones, and calcareous
mudrocks (SEE PART 1).

(Ternary diagram subdivisions after Nance, personal communication, 2013.)

XRF Data Define 
Mineralogy and
Chemofacies in 
R. Ricker 1 Well

On the basis of data from handheld XRF, we define facies mostly
by variation in carbonate content. Siliceous mudrocks are >50%
quartz. Mixed siliceous mudrocks are dominated by quartz, with
varying amounts of illite and calcite. Siliceous calcareous
mudrocks are dominated by calcite. Limestones ( >50% calcite),
are skeletal wackestone/packstones and calcareous mudrocks, 
based on core description and XRD data (SEE PART 1). Illite is
<50%, so no argillaceous mudrocks are present in this core.
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