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Abstract

Mudrocks comprise any deposit with >50% of grains <62 microns in size. Composition, fabric, and texture often are extremely variable. Major
influences on these parameters include tectonic setting, source terrane, basin physiography, water depth, circulation and upwelling,
oxygenation, climate, eustasy, and detrital influx. Thus, mudrock character - which ultimately controls the distribution and deliverability of
hydrocarbons - is anything BUT homogeneous.

Macroscopic core description, tied to stratigraphic framework and integrated with lab analyses and petrophysical interpretation, is critical in
understanding variability and deciphering patterns in composition, fabric, and texture. A rich diversity of facies can be discerned. Sedimentary
structures, such as ripple cross laminae, graded bedding, scour surfaces, rhythmic couplets, and minute burrows to "cryptobioturbation," are
common. Stratigraphic variations in these features relate directly to changing depositional conditions and sequence position.

Mudrocks do not simply fill basins passively. Competition between extrabasinal input and intrabasinal biogenic productivity creates conditions
for lithologic cycles, clinoform geometries, and water-column stratification. Benthic fauna colonize the seafloor during dysaerobic to aerobic
periods, then experience "terror" during periods of mass transport. An understanding of these stratigraphic relationships requires regional
correlations that commonly cover thousands of square miles.

Depositional patterns from basins of the Rocky Mountains, Gulf of Mexico, and Canada suggest that mudrock reservoirs are associated with
distinct sequence stratigraphic hierarchies. Most prospective mudrock intervals develop during 2nd-order transgressions. In basins with strong
extrabasinal sediment influx, the better reservoirs require load-bearing grains and typically form during either 3rd-order highstands or
lowstands. By contrast, in basins dominated by intrabasinal biogenic material, the best reservoirs often occur in 3rd-order condensed sections.
Such units are frequently brittle, with low clay content, high TOC, and abundant microfossils. Thus, the integration of rock description and
sequence framework provides better insight into lateral and vertical changes in mudrock character and reservoir targeting.
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Key Points

e rich diversity of lithologies & depositional facies
occurs in mudrocks

e coOre description critical to understanding
distribution & controls on composition & texture
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Mudrock — Not Just Shale!

> 50% of grains less than 62.5 microns

silt:clay
23  ratio 1/3

mudstone | claystone

siltstone

mudshale | clayshale




Variable Mudrock Reservoirs
(one size does not fit all)

 siliciclastic mudrocks
— biogenic quartz (radiolarite, diatomite, porcellanite, chert)
— biogenic quartz + clay
— detrital quartz + clay
e carbonate mudrocks
— detrital carbonate (micrograinstones)
— biogenic carbonate (chalk)

— biogenic.carbonate + clay (marl)
— dolomite

. hybrid reservoirs
— siliciclastic'+ carbonate'mixtures
—nterlaminated imudstone-siltstone/sandstone
= phosphorite

Presenter’s notes: “Shale” (i.e., mudrock) reservoirs include a wide range of lithologies.
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Presenter’s notes: Variable controls — and thus resulting composition and reservoir character - for the coeval Barnett (B), Caney (C), Fayetteville

(F), and Floyd (F1) shales.



Depositional Effects on Variability
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Goals of Mudrock Core Description

« systematic description of composition,

___texture, & fractures (documentation beyond

core photos)

* interpret depositional processes & lithofacies
-+ calibrate the rocks to the wellflogs

 integration w/lab analyses & petrophysics

. relate reseryvoir.& mechanical properties to
pasinal & 'sequence position

o prediction & assessmentiofitarget(s)

Presenter’s notes: Core description helps to discern and interpret the variability; it provides organization from chaos.




One Problem with Mudrocks in Core
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No Good Existing Mudrock Classification

CLAY Clay

emphasize grain size,
nothing about
composition or

Fleming, 2000 Shepard, 1954
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Color Fill
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Numeric | Facies Micro | Detrital | Amorp Dol
Code Code Facies Name Geologic Description Fabric Qtz Qtz (Bio) Ca | CaMg Clay
1 D Dolostone White, massive-appearing dolomite; thin beds: |massive 100%
Mo reaction in 10% HCI. Present at distinct
stratigraphic horizons in beds = 20 cm thick.
3 Ch Chalk (pure) |White, burrowed, recrystallized to highly massive 100% tr
fossiliferous chalk, almost 100% biogenic-
derived carbonate. Mo organic material, silt, or
clay.
5 BCPCh Burrowed Light gray, finely interlaminated foraminiferid and | massive 5% >75% <5%
Calcareous coccolithoporid tests and copepod pellets: XRD
Pelletal Chalk |analysis = 75% total carbonate with minor clay.
TOC == 2% TOC, and may range up to 30%.
Burrowing up to ¥5%
6 FPMa Foraminiferid |Medium gray, finely interlaminated foraminiferid |mm-cm <h% 26-T5% <25%
Pelletal and coccolithoporid tests and copepod-pellets:  |lam
Marlstone ARD analysis 25 to 75% carbonate relative to
clay fraction. May also contain quartz silt grains
and == 2% TOC. Burrowing is rare.
8 SPMa Silty Pelletal Medium to dark gray, finely & rhythmically mm-cm <30% 25-50% <35%
Marlstone interlaminated clay, foraminiferid and lam
coccolithoporid tests and copepod-pellets: XRD
analysis 25 to 50% total carbonate. Contains up
to 30% quartz silt grains. May also contain
glauconite, pyrite, and inoceramid prisms, and
=2% TOC. Burrowing is = 25%._
20 BCSIt Burrowed Gray, bioturbated clayey siltstone, trace of massive 60% (<10%) >30%.
Clayey radiolarians. Commaon Schaubcylindrichnus
Siltstone burrows within otherwise completely burrowed
matrix. Up to 5% detrital plagioclase, = 90%
XRED quarz is detrital
21 IVF Interlaminated |Gray alternating with white, cm-scale massive | 20-50% 50-80%
VF Ss and interlaminated beds of claystone and vf Ss,
Silty yvielding 20-505 net ss. Claystone may be
Claystone narmally or ungraded. 55 consists of 1-2 grain
thick starved, incipient ripples, appearing as
"streaks" with indistinguishable formsets.
Burrowin rare, consists of isoplated Planolites ar
Chondrites, associated exclusively with Ss
fraction.




Mudrock Description

accessories (I,
color (pyrite, [EASSEEeR
fossils, etc) [FRSAN
lithoelogy. natural
(Ccomposition) fracturing
texture s
(Sedimentary, partl_ngs
SHUCLUTES CONNG - L
[ESPONSE Rt

s grainisize)



Color & Lithology

marl claystone
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“Lithology (Framework)
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Lithology (Organic Matter)
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Sedimentary Structures (Texture):‘m «

E

grading

N

= 3
0 X = no water =
T “burrows*
& i " - , from www.shale-
- mudstone-research-

ripples deformation schieber.indiana.edu

Presenter’s notes: Detailed examination of cores reveals a wide variety of primary & secondary sedimentary structures, which can be used to
interpret depositional processes. In addition, each depositional feature produces a unique pore network.




turbidites Event Sedimentation

mul rivyl

from Schieber, 2011

Presenter’s notes: Many primary sedimentary structures provide evidence of event sedimentation.
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Depositional Fabric
Affects Mechanical Properties

-

68% calcite, 50% calcite,
12% quartz, 19% quartz,
3% feldspar 8% feldspar,
1% pyrite, 3% dolomite,

+ 2% pyrite,

; accessories +
accessories

Presenter’s notes: XRD data suggest these two intervals from the same formation have comparable percentages of brittle and ductile material, and
thus should behave mechanically in a similar manner. However, contrasts in grain types and fabric actually create quite disparate mechanical
properties. The sample on the left is from a zone that exhibits “sticking” problems during horizontal drilling; the sample on the right is from the target
zone where drilling is much easier, and complex fractures can be produced. Core description helps discern the differences.




Bioturbation polychaetes

from http.//uhmanoa-antarctic-research.
blogspot.com/2008 08 01_archive.html
nematodes

c from palas.cti.espol.
edu.ec

\
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Presenter’s notes: In dysoxic to anaerobic environments, large metazoan burrowers (e.g., echinoderms, mollusks, crustaceans) disappear. Two of
the more common burrowing organisms in such settings are much reduced in size: nematodes and polychaete worms. Diminutive to cryptic burrows
result.




L aminated vs. Burrowed

laminated marlstone burrowed marlstone

:
i
3

3, o)
N3 SN . )

h N
bl A K A ’}

A lluimml SMESDOTIPToVidessamewel | 10g TESPONSE& XRD patier
eogresources




planar pore structure ps &
of laminated shale

Fabric Affects
Distribution &
Production of
Hydrocarbons

: ‘ "{:ﬂ: "f &

"‘ e B \h ‘\ _ \ N
open pore structure of
bioturbated mudstone .‘ *;“,

from Day-Stirrat, 2010

Presenter’s notes: Contrasting fabrics and resulting pore networks in laminated vs. bioturbated mudrocks, which in turn affect the distribution and
production of hydrocarbons.
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Presenter’s notes: Information on styles, numbers, and lithologic controls on natural fractures can be gathered from core and should be shared with
drilling and completion engineers.



Partings/Coring Response -
Lithology & Mechanical Properties
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Presenter’s notes: A quick examination of the margins of a core and how it breaks can provide qualitative information on lithology and mechanical
properties.




Relate Description to Strat Framework
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Strat Cycles = Depositional Competition

biogenic productivity & preservation

after D’Agostino, 2007

deltaic outflow, arbonate-margin shedding

- Sait Wedge
Slope > 0.7°

fronT Bhattacharya &
MacEachern, 2009,

Presenter’s notes: Fine-grained material is delivered into the central basin far from the margin by a variety of processes. Deltaic outflow and
shedding of materials from carbonate ramps or platforms produce bottom-hugging sediment-gravity flows as well as sediment plumes that float near
the water surface. In addition, organic material (from algae, bacteria, pellets, spores, etc.) is produced in shallow water, drops through the sediment
column, and, in reducing bottom waters, is preserved.



Stratigraphic
Cycles in Logs
= Biogenic
Fallout vs.
Dilution by
Clays
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Stratigraphic Cycles on Outcrop

Presenter’s notes: Mowry Formation at Emigrant Gap.




Stratigraphic Cycles in Core

Offshore
Vancouver
Island

light layers =
summer diatom
blooms

dark layers =

winter terrigenous

Influx (heavy
rainfall)

from http://sst-ess.rncan-
nrcan.gc.ca/2002_2006/rc

vcelj27/12_2 _e.php
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Hierarchy of Cycles - Haynesville/Bossier

regional
seal

s?@ouanbag 18pIO-p.€

after Goldhammer, 1999

Presenter’s notes: The Haynesville-Bossier stratigraphic system represents a 2™%-order transgression (Haynesville Shale and Cotton Valley lime)
followed by a 2" order highstand (Bossier Shale and Cotton Valley clastics). We see similar paired intervals of a transgressive systems tract overlain
by a highstand systems tract in a variety of mudstone systems, e.g., the Muskwa-Ft. Simpson, Mowry-Belle Fourche, Niobrara-Pierre, Barnett-
Marble Falls, etc.

Note that at the turnaround from 2"-order transgression to highstand, a regional maximum-flooding surface (condensed section) is developed. In
many basins, unless breached by faulting or erosion, this interval forms a regional seal with normal pressure above and overpressure below.

The green box outlines the distal portion of this depositional system, the area where our mudrock reservoirs typically are found. When the 3™-order
transgressive and highstand systems tracts are added to the picture, note that the distal (most basinal) position is dominated by the higher frequency
highstand packages.



Third_Order ?1436[% bioturbated E
E calcareous E
Cycles Control E mt;:liitrc;nef o
Reservoir/Targets - | grainstone [T
- (late hst) | o
14380 =
E A
Shell Temple #1 :
L | : E laminated
: mudstone
et : (middle hst)|-S
ram 14400 =
?_.‘... z >
i : K
' ' E siliceous | ©
'I 3 black
- E mudstone
14420  (tst &
i early hst)
E froimm Hammes, 2004

Presenter’s notes: Log and core example of a third-order transgressive to highstand package in the Haynesville-Bossier system. Note the vertical
change in lithology and fabric related to systems tract.
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- organic & clay-rich = ductile

4420

4360
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froim Hamines, 2009
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Presenter’s notes: Representative thin sections from the cored example of a third-order transgressive to highstand package. Note the vertical

change in lithology and fabric related to systems tract.



Bioturbated Carbonate Mudstone
— Late Highstand
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Presenter’s notes: SEM of an argon-ion-beam milled sample of Haynesville bioturbated carbonate mudstone. Pore throats are on the order of %4
micron — which falls in the realm of tight sandstone reservoirs (see figure later adapted from Nelson, 2009).




Relate Description to Strat Framework
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cycles relate cores to log
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Core Calibration
to Log

What do “log markers”
represent & which are
most important?

Presenter’s notes: Mowry Formation core.
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Presenter’s notes: This example of a Mowry Shale log from the Powder River Basin shows changes in gamma-ray, resistivity, and conductivity. As

in shallow-water environments, the high gamma-ray/low-resistivity spikes can be interpreted as flooding surfaces (in this case, with concentrations of
bentonite). Then, using basic concepts of sequence stratigraphy, the stacking patterns of the parasequences between the flooding surfaces can be
interpreted as to their corresponding systems tracts.



Seismic Interpretation

Presenter’s notes: Basins do not fill like bathtubs. Instead, margins build out into the basin (producing clinoforms). Here is a flattened seismic line
with an interpretation of clinoforms from the Woodford and an accompanying line drawing of the interpreted facies distribution.



Mowry Regional Stratigraphy

Green R. Basin Wind R. Basin Powder R. Basin
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Presenter’s notes: Utilizing the concept of subtle clinoformal deposition, flooding surfaces and systems tracts of the Mowry can be correlated

across Wyoming for over 250 miles, from the La Barge Platform on the left to the central Powder River Basin on the right. Note downlap onto the
interpreted maximum flooding surfaces. A silt-rich zone present in the middle Mowry in the Powder River basin, interpreted as a lowstand package,
correlates to a distinct shoreface regression that is sandwiched between clay-rich intervals on the La Barge Platform.



Relate Description to Strat Framework

relate cores to log

patterns (calibration) decipher.vertical & lateral
cycle variations
<A » reservoir.quality;
vzdf/\ > mechanicalistratigrapny.
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Presenter’s notes: Pore and pore-throat sizes are key components of reservoir quality. Typical sizes of pore throats for sandstones and shales are
compared to diameters of clay, silt, and sand, and to molecular sizes of various oils, gases, water, and mercury. Scales of bacteria, viruses, and DNA
help provide a frame of reference. SEM of an argon-ion-beam milled sample, exhibiting variations in pore size in kerogen from the Barnett, is also
shown.



General Observations

e Intervals with load-bearing, brittle framework
AND large pores provide the best reservoirs

o Input.dominantly detrital; high-frequency
nighstands & lowstands often contain most

— highstand ordowstand silicainflux{(detrital clay & silt)
— highstand icarpbonateinfluxd(irom platformmargin)
— lowstand carbonateintiux{eroded terrain)
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Presenter’s notes: Abundant data on pore throats in mudrocks come from offshore Brazil, W. Africa, the North Sea, and Gulf of Mexico — where
mudrocks have been analyzed for their sealing capacity in oil systems. For our purpose, we can look at the reciprocal of this — reservoir character of
these mudstones based on pore-throat distribution.

In this example from the Tertiary of the offshore Gulf of Mexico, laminated mudstones of the transgressive systems tract have a modal pore-throat
size of 20 nm; carbonaceous claystones of the condensed section have a modal pore-throat size of 4 nm, and bioturbated silty mudstones of the
highstand have a modal pore-throat size of 28 nm. Mercury-injection capillary-pressure data for these samples indicate 3 distinct mudstone
populations. Samples from the condensed section require the highest pressures to create a continuous thread of mercury extending through the sample
(i.e., at 10% saturation) — supporting this interval as having the smallest pore throats. Samples from the highstand systems tract show the lowest
pressures required to get 10% saturation — signifying that this unit contains the largest, most interconnected pore throats. Samples from the
transgressive systems tract display intermediate pressures required for 10% saturation.



Biogenic Dominated — Muskwa Fm
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Presenter’s notes: Muskwa MICP data from the published literature indicate that mixed clay-biogenic silica systems have a bimodal pore-throat
distribution. Very large pore throats - but low porosity - dominate the most silica-rich (hence, strong and brittle) intervals. The smaller pore-throat
mode dominates the clay-rich sections, which have the best porosity but are expected to act as “sponges” with low strength and higher ductility.



Sequence Stratigraphic Framework —

Why It Makes A Difference
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Presenter’s notes: A chronostratigraphic (sequence stratigraphic) correlation shows that the Floyd Shale (a lithostratigraphically defined unit,
highlighted in gray) encompasses two distinct systems tracts. To the north, it dominantly comprises a transgressive, clay-rich interval. Flooding
surfaces that cap parasequences in the Bangor Limestone on the north can be extended southward into the Floyd Shale, where it consists of a distal,
calcareous highstand package. Typical sampling and mapping of the Floyd Shale do not separate these systems tracts. “Lumping” of the changing

composition, reservoir character, and mechanical properties across the maximum flooding surface (green line) is similar to comparing apples to
oranges.
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