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Abstract 

 
In CO2 deep saline sequestration projects, reservoir pressure build up is one of the main restrictions. Although the application of horizontal 
injection well would improve the injectivity, it could not increase the capacity of the reservoir unless there is an external mechanism to 
dissipate pressure. The effect of pressure build up would be especially important when multiple injection wells are used. One of the feasible 
methods to decrease the reservoir pressure is to extract the brine in the formation to create more available volume for CO2 injection. The target 
formation of this study is the Mt. Simon Sandstone Formation. The large nature of the reservoir and variation of key storage and transport 
characteristics of the Mt. Simon Sandstone Formation are also two of the challenges of this study. Besides, as brine production is used to reduce 
the injection pressure limitation, CO2 breakthrough may happen at the production well prematurely, which potentially can reduce the efficacy of 
the CO2 injection operation. More importantly, the post injection stabilized reservoir pressure should be another important concern. The post 
injection stabilized reservoir pressure should be maintained below a safety level to prevent the injected CO2 from migrating upwards through the 
formation seal. 
 
Previous studies done by Sun and Ertekin (2012) show that the regular 4-spot injection pattern has the best injection performance when 
comparing with other types of injection patterns. The objective of this work is to study the relationship between the CO2 injectivity and the 
design parameters of CO2 injection patterns and to generate a solution to obtain the optimal design of the injection pattern. A commercial 
numerical simulator, the compositional numerical simulator in Computer Modeling Group software suit (CMG-GEM) is employed as the 
numerical tool for the simulation. This work implements Monte Carlo Simulation protocol for multiple simulation runs with different 
combinations of reservoir properties to reduce the uncertainties from the nature of the formation. This work also runs multiple simulations with 
different combinations of design parameters to generate one-to-one relationships between the pattern design parameters and the projects output. 
Then the optimal design of injection pattern can be determined. 
 



The commercial simulator is a high-fidelity model. If these Monte Carlo runs totally rely on hard computation, the simulation will take considerable 
time and be hard drive space consuming. In order to address these issues, this study employed artificial neural network as a soft computation 
technique. If an expert system for this problem can be trained, it can predict the output accurately within a fraction of a second. More 
importantly, the expert system helps to generate large amount of Monte Carlo simulation runs with in short period of time. 
 
The regular 4-spot injection pattern is modeled in a 30×30×1 grid system, as shown in Figure 1. Table 1 shows the ranges of reservoir properties 
and injection pattern parameters. One thousand groups of input data within corresponding ranges are generated and combined randomly. One can 
run simulation using the commercial software with those 1,000 groups of input data and 1,000 groups of output data will be generated. Two 
different expert systems are developed for different simulation purposes: 
 

1. End-point forward-looking solution network (EFSN), with input of reservoir properties and engineering design parameters and output of 
cumulative CO2 injection, injection efficiency, and pressure depletion ratio at the end of the injection period. The architecture design of 
EFSN is shown in Figure 2. 

 
2. Injection efficiency profile network (IEPN), with input of reservoir properties and engineering design parameters and output of injection 

efficiency profile at different times. The architecture design of IEPN is shown in Figure 3. 
 
These two artificial neural networks are validated through internal blind tests. These tests show error margins of around 10%, which indicates that 
the expert systems are well trained and can be used to predict simulation results. Figure 4, Figure 5, Figure 6, and Figure 7 show the tests result 
of these expert systems. 
 
By implementing the EFSN, one can generate simulation runs by large number of different combinations of design parameters to determine 
the optimal design. The Mt. Simon Formation in the Michigan Basin is selected as the field cases. The regression equation developed by 
Medina et al. (2010) describing the permeability and porosity of the reservoir as a function of burial depth is employed to generate the 
permeability and porosity distribution maps. Then the cumulative CO2 injection distribution map can be generated (Figure 8). The IEPN helps to 
generate the injection efficiency distribution maps at different times (Figure 9). 
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Figure 1. 2-D simulation model for 4-spot injection pattern. 



 
 
Figure 2. Architecture of EFSN. 



 
 
Figure 3. Architecture of IEPN. 



  
 
Figure 4. Comparison of EFSN prediction and numerical model results of cumulative CO2 injection. 



 
 
Figure 5. Comparison of EFSN prediction and numerical model results of stabilized injector block pressure.  



 
 
Figure 6. Injection efficiency profiles predicted by IEPN and numerical model, Case 1. 



  
 
Figure 7. Injection efficiency profiles predicted by IEPN and numerical model, Case 2. 



                                                 
 
Figure 8. Cumulative CO2 injection distribution map in Michigan Basin. 



                                                     
 
Figure 9. Injection efficiency distribution at the end of 2012, 2014, and 2017. 



             
 
Table 1. Summary of training data ranges. 




