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Abstract 

 

The Cardium Formation has been the subject of extensive study since Socony Mobil Oil first struck oil in the Pembina area in 1953. Interest in 

the formation waned during the 1990's; however, with refinements in horizontal drilling and multistage hydraulic fracing techniques, interest 

has been rekindled. New drilling targets are thinner, lower quality reservoirs that require a greater understanding of subtle variability of 

reservoir quality and geometry. We use petrophysical, petrological and production analysis techniques to define a geological framework, 

characterize the reservoir interval, and examine the effectiveness of different completion techniques. Well logs from over 800 wells and core 

analyses from 440 wells were used to map the formation and identify conglomeratic intervals. Ten cores were logged to characterize lithofacies. 

Grain size, XRD, EDX, and CL analyses were conducted on each lithofacies. New and innovative Variable Pressure Environmental Field 

Emission Microscopy techniques were developed to identify and observe difficult-to-image clays and to conduct rock-fluid interaction 

experiments. Subsurface mapping revealed that only datums below the sandstones provide a realistic basinward-dipping geometry, and 3 

upward-cleaning sandstone clinoforms were identified. The upper clinoforms have their thickest sandstone intervals in more basinward 

positions than the underlying clinoforms, indicating basinward progradation. Petrological findings include XRD and BSE identification of 

kaolinite, illite, and mixed layer kaolinite-smectite clays. Quartz overgrowths have been shown to increase grain size and completely occlude 

porosity within some sandstone-filled burrows. Comparisons between lithofacies and grain-size analyses have revealed a clear inverse 

relationship to water saturation, such that as grain size increases and shale content decreases, water saturation also decreases. This relationship 

holds despite the very slight grain-size difference observed between lithofacies.  

 

A total of 126 horizontal wells were used for production analysis. Wells were grouped and compared based on pay thickness, number of fraced 

stages, and completion fluid. While no positive correlation between pay thickness and production has been observed, there is a strong 

correlation between completions technology and 1st year production. This is best demonstrated by a 39% increase in 12-month cumulative 

production in wells with greater than 20 fraced stages.  
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GEOLOGY



6 Lithofacies Identified 
1. Dark Grey Shale &Wacke

Modified from Krause and Nelson, 1984 
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6 Lithofacies Identified 
1. Dark Grey Shale &Wacke
2. Bioturbated Wacke 

Modified from Krause and Nelson, 1984 
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6 Lithofacies Identified 
1. Dark Grey Shale &Wacke
2. Bioturbated Wacke 
3. Thinly interbedded VF-grained 

SS & muds

Modified from Krause and Nelson, 1984 
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6 Lithofacies Identified 
1. Dark Grey Shale &Wacke
2. Bioturbated Wacke 
3. Thinly interbedded VF-grained 

SS & muds
4. Medium to thick-bedded, VF-F-

grained SS

Modified from Krause and Nelson, 1984 
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6 Lithofacies Identified 
1. Dark Grey Shale &Wacke
2. Bioturbated Wacke 
3. Thinly interbedded VF-grained 

SS & muds
4. Medium to thick-bedded, VF-F-

grained SS
5. Conglomerate

Modified from Krause and Nelson, 1984 
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STRATIGRAPHIC MAP 
Russian Marker – Cardium SS 
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CLAY MINERALOGY
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PRODUCTION ANALYSES
Proppant
Tonnage

Base Frac Fluid
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METHODS 

Production data - geoSCOUT© up to Oct, 2012

Completions data – Canadian Discovery 

Well Completions & Frac Database® 

Production averages calculated until well counts 
dropped below 4 

When well counts were sufficient production 
was calculated for the 1st 12 months 
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CONCLUSIONS

Geology impacts well performance 
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Geology impacts well performance 
Reservoir properties vary across the study 
area

Lithofacies - Por and Perm 
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Geology impacts well performance 
Reservoir properties vary across the study 
area
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Clay mineralogy / Fluid Sensitivity
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Completions impact well performance 

CONCLUSIONS CONT.
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Completions impact well performance 
Number of fraced stages appears to have 
largest impact on wells productivity 
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Completions impact well performance 
Number of fraced stages appears to have largest 
impact on wells productivity 

19 000 bbl

A frac spacing of  80 m or less is optimal
Well bore orientation has little impact 
Slickwater and Water-based fracs are both 
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STRATIGRAPHIC MAP & 
CONGLOMERATE
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PAY CUT-OFFS

Petrofacies Por (%) K max (md) SW (%)
Ohm*m Value Count Value Count Value Count

< 20 0.08 84 0.08 64 0.48 78

20-30 0.11 549 0.4 486 0.23 500
> 30 0.12 418 0.61 393 0.19 387

DPSS % Por (%) K max (md) SW (%)
< 6 0.08 84 0.11 109 0.31 107

6 to 12 0.11 316 0.42 313 0.19 288
> 12 0.12 160 0.48 159 0.09 157
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