Erosional Tidal Ridges in the Bakken Formation (Late Devonian-Early Mississippian), Southwestern Saskatchewan, Canada*

James M. Wood¹, Shaun C. O'Connell², and Stephen P. Robinson³

Search and Discovery Article #50901 (2013)**
Posted December 16, 2013

Abstract

The Bakken Formation provides a rare opportunity to study an ancient tidal sand ridge system in the subsurface using a data set consisting of thousands of wells. Subsurface mapping and core examination show that the tidal ridge morphology is defined by a scour surface near the top of the Bakken Formation. This scour surface is part of a regional transgressive surface of erosion (TSE) that separates lowstand (LST) and transgressive (TST) systems tracts. In the study area, the LST consists of a progradational tide-dominated delta system. The overlying TST consists of a deepening-upward marine shale succession with shallow offshore deposits passing upwards into deeper anoxic shelf deposits.

The TSE is a sharp contact, or appears gradational due to modification by bioturbation. Cross-sections show the TSE has a ridge and swale morphology that truncates coarsening-upward successions in the LST. An isopach map of the LST shows a series of regularly spaced, linear, northeast-southwest oriented thick and thin sand trends. Ridges defined by the isopach map have vertical relief of 10 to 15 m (maximum 24 m) and crest-to-crest spacing of 3 to 7 km (maximum 10 km). These dimensions are comparable to those of modern shelf ridges. Bakken ridges are generally symmetrical which is typical of erosional Class I tidal ridges (Snedden and Dalrymple, 1999). Internally, Bakken ridges show no evidence of accretion deposits indicative of sand ridge migration. The ridge and swale morphology of the TSE played a major role in the migration and trapping of hydrocarbons.

References Cited

Dalrymple, R.W., B.A. Zaitlin, and R. Boyd, 1992, Estuarine facies models; conceptual basis and stratigraphic implications: Journal of Sedimentary Petrology, v. 62/6, p. 1130-1146.

^{*}Adapted from oral presentation given at AAPG Annual Convention and Exhibition, Calgary, Alberta, Canada, June 19-22, 2005

^{**}AAPG © 2013 Serial rights given by author. For all other rights contact author directly.

¹EnCana Corporation, Calgary, AB (James.Wood@EnCana.com)

²Belfield Resources, Calgary, AB

³Conoco Phillips, Calgary, AB

Smith, M.G. and R.M. Bustin, 2000, Late Devonian and Early Mississippian Bakken and Exshaw black shale source rocks, Western Canada sedimentary basin; a sequence stratigraphic interpretation: AAPG Bulletin, v. 84/7, p. 940-960.

Snedden, J.W. and R.W. Dalrymple, 1999, Modern shelf sand ridges; from historical perspective to a unified hydrodynamic and evolutionary model, in K.M. Bergman and J.W. Snedden, eds., Isolated shallow marine sand bodies; sequence stratigraphic analysis and sedimentologic interpretation: Special Publication Society for Sedimentary Geology, v. 64, p. 13-28.

Yang, C-S. and J-S. Sun, 1988, Tidal sand ridges on the East China Sea Shelf, in P.L. de Boer, A. van Gelder, and S.D. Nio, eds., Tide-influenced sedimentary environments and facies: D. Reidel Publishing Company, Dordrecht, Netherlands, p. 23-38.

Erosional Tidal Ridges in the Bakken Formation (Late Devonian-Early Mississippian), Southwestern Saskatchewan, Canada

James M. Wood - EnCana Corporation Shaun C. O'Connell - Belfield Resources Stephen P. Robinson - ConocoPhillips Canada

2005 AAPG Annual Convention

Introduction

- Tidal ridge systems are common on modern continental shelves, but rarely recognized in the stratigraphic record
- The Bakken Formation provides a unique opportunity to study an ancient tidal ridge system using thousands of wells and dozens of drill cores
- We will show that the Bakken tidal ridge system is defined by an erosional surface near the top of the formation
- The Bakken ridge system therefore does not reflect the depositional morphology of active tidal sand ridges as previously proposed

Modern Tidal Ridge Systems

Spectrum of Erosional to Depositional Tidal Ridges

Three criteria can be used to determine the classification of ancient tidal ridges:

- Position of the TSE
- Ridge morphology (symmetrical vs asymmetrical)
- Nature of ridge facies (precursor deposits vs accreted ridge sand)

Bakken Stratigraphy

Distal Offshore Marine

Offshore Marine

Tide-Dominated Deltaic

Offshore Marine

Distal Offshore Marine

Late Devonian Paleogeography

- The west coast of North America had an east-west oriented gulf that occupied most of the Williston Basin
- The Bakken Fm of the study area was deposited in a subbasin on the northern side of the constricted gulf

Study Area and Data Set

Area 1:

- ~ 5200 km² (2000 sq miles)
- ~ 4000 wells*
- 20 cores examined

Area 2:

- ~ 2800 km² (1100 sq miles)
- ~ 700 wells*
- 37 cores examined

Sequence Stratigraphy

Regional sequence **HST** stratigraphic framework of Smith **MFS** and Bustin (2000) **TST** TSE **LST** Isopach map SB **TST** SB/TSE

LST = lowstand systems tract
TST = transgressive systems tract
HST = highstand systems tract
SB = sequence boundary
TSE = transgressive surface of erosion

MFS = maximum flooding surface

Isopach Map

- overall thickening to SW
- regularly spaced, linear
 NE-SW oriented thick
 and thin trends
- thick trends are generally symmetrical

Dimensions of Tidal Ridges in the Middle Bakken Member

	Typical Range	Maximum
Vertical Relief	10 – 15 m	24 m
Crest-to-Crest Spacing	3 – 7 km	10 km
Length*	13 – 40 km	80 km

The Bakken ridge dimensions are comparable to those of modern tidal ridge systems

Cross-Section Location

Cactus Lake Cross-Section

truncates progradational cycles in the Middle Bakken

Ridge Core

Swale Core

Core Photos of TSE

Sharp contact on ridge crest

Bioturbated contact in swale

Spectrum of Erosional to Depositional Ridge Types

Three criteria can be used to determine the classification of ancient tidal ridges:

- Position of the TSE 🚺

- Ridge morphology (symmetrical vs asymmetrical)

 Nature of ridge facies (precursor deposits vs accreted ridge sand)

Current Ripples & Herringbone Structures

Interlaminated Sandstone and Shale

Tidal Structures

Double mud drapes and sigmoidal bedding

Tidal Structures

Flaser forks

Double mud drapes

Neap-spring cycles

Tidal Channel Facies

Wave Ripples and Storm Beds

Bioturbation

Skolithos in current rippled sandstone

Chondrites and Helminthopsis in siltstone

Ridge Facies Core

Ridge Facies Core

Ridge Facies Core with Paleosols

Paleosols

Bakken Facies Model

Middle Bakken sands and muds were deposited in a progradational, currentand tide-dominated setting with subordinate wave and storm influences, and lateral abandonment facies. A likely setting is a series of large flood tidal deltas.

Cross-Section Location

Longitudinal Section Along Ridge Crest

Spectrum of Erosional to **Depositional Ridge Types**

Three criteria can be used to determine the classification of ancient tidal ridges:

- Position of the TSE

- Ridge morphology (symmetrical vs asymmetrical)

- Nature of ridge facies 🍞 (precursor deposits vs accreted ridge sand)

Expected Features of Depositional Ridges

- TSE at base of ridge facies
- Asymmetric ridges
- Ridge facies consists almost wholly of sand
- Inclined bedding that dip in a consistent direction with respect to ridge orientation
- Coarsest grain size and best reservoir quality consistently on higher-energy flanks

Late Devonian Paleogeography

- Sediment supplied to tide-dominated deltas during lowstand
- Ridge and swale morphology of TSE generated net erosion of sea floor during rising sea level
- Ridge orientation was oblique to flow generated by tidal exchange through constricted gulf

Hydrocarbon Trapping

The Middle Bakken Member is a major heavy oil resource in SW Saskatchewan with 2015 million barrels OOIP and 242 million barrels ultimate recoverable reserves*

The tidal ridge morphology of the TSE near the top of the Bakken Formation played a major role in the migration and trapping of hydrocarbons

^{*} Saskatchewan Industry and Resources data at http://www.public-knowledge.com

Hydrocarbon Trapping

Conclusions

- A tidal ridge system in the Bakken Formation is defined by a transgressive surface of erosion (TSE) near the top of the formation
- Ridge facies beneath the TSE are older precursor deposits - they are lowstand deposits that were laid down in tide-dominated deltas and related environments
- The Bakken ridge system was not generated by the accretion of active tidal ridge sands
- The ridge and swale morphology of the TSE played a major role in the migration and trapping of hydrocarbons

Acknowledgements

- EnCana Corporation
- ConocoPhillips Canada
- Saskatchewan Energy and Mines Subsurface Geological Laboratory
- Peter Cupido, Ron Jackson, Greg Kaidannek, Stan Lavender, Vijay Modha, Kirk Odland, Hans Speelman, Gloria Stock, Kim Wallace, Paul Yee