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Abstract

Sedimentation across the tidal-fluvial transition of the lower Fraser River is a function of the interplay of fluvial flow and tidal flux, and the
degree of saltwater — freshwater mixing. The local hydrodynamic conditions in the channels determine the distribution of sand and mud, with
mud concentrated in the turbidity maximum zone. Vibracores were collected from three channel bars in the tidally influenced reaches of the
Fraser River, to assess the lateral distribution and thickness of mud layers and link them to the causative hydrodynamic conditions.

In the freshwater tidal reach near Fort Langley, muds are thin (mm to cm) and laterally continuous for meters— — tens of meters. They
accumulate in the upper intertidal zone and are planar-laminated, reflecting suspension settling during base-flow conditions. Intervals lack
cyclic mud deposition, with <5 mud beds/meter in vertical profile. Bioturbation is sparse (BI 0-1), with rare horizontal traces (e.g., Planolites)
of deposit-feeders. In the brackish-water, tide-influenced reach at Port Mann, muds are thicker (cm to dm) and span tens — hundreds of meters
laterally. They are deposited in the uppermost subtidal and intertidal zones, are planar-laminated or show floccule ripples, and are more
abundant (~5 beds/meter in vertical profile). Bedding cyclicity is not well expressed, due to the dominance of fluvial processes. Bioturbation is
reduced (BI 0-2) and patchily distributed, consisting of vertical-dwelling traces (e.g., Skolithos, Polykladichnus) subtending into muds from
sand-mud contacts. In the brackish-water, strongly tide-influenced reaches in Canoe Pass, muds are thickest (cm to dm) and extend laterally for
hundreds of meters — kilometers. They comprise stacked floccule ripples, with lesser structureless and laminated layers, reflecting dynamic
mud deposition. A weak, seasonally induced cyclicity occurs, with muds ranging from 5-10 beds/meter in vertical profile. Bioturbation shows
BI 0-2, is patchily distributed, and comprises diminutive deposit-feeding (e.g., Planolites, Teichichnus) and dwelling (e.g., Skolithos,
Polykladichnus) traces. Burrows occur in both sand and mud beds.

This semi-quantitative comparison of hydrodynamics and mud characteristics is of fundamental importance to the production of
unconventional hydrocarbons from tidal-fluvial reservoirs (e.g., McMurray Formation). The study shows that these types of mud layers control
heterogeneity and, ultimately, reservoir compartmentalization.
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The Tidal-Fluvial Transition
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The Fraser River Basin

» Drainage basin 228 000 km?

» Unrestricted river flow for
1200 km




River Flow and Tides in the Fraser River

Mixed semi-diurnal tides
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Sediment Load in the Fraser River
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Seasonal Position of the Turbidity Max
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Seasonal Position of the Turbidity Max
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Canoe Pass (Westham Island)
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Fraser Heights
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Fort Langley (MacMillan Island)
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Canoe Pass (Brackish Water)
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Fraser Heights (FW- SW ransition)
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Fort Langley (Fresh Water)
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Variation Across the Transition
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Mud Bed Thickness
Distribution
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Sand Bed Thickness
Distribution

Mixed tidal-fluvial, Tidally-influenced, Tidally-influenced,
Brackish water FW-SW transition Fresh water

WHI Sand Beds FHB Sand Beds MMI Sand Beds
o=37r.6cm .0 3l.86 CMm
n=48

Frequency (%)
Freguency (%)
Fraguancy (%)

15 540 1020 2050 50-100 =100 15 540 1020 2050 50100 =100 <
Bed/Lamina Thickness (cm) Bed/Lamina Thickness (cm) Bed/Lamina Thickness (cm)

15 510 0320 F0-E0 50100 =00

Evenly distributed between 1 Evenly distributed between 1
cm and 1 m thick Most between 1- 5 cm thick cm and 1 m thick
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n=24 n=17

e

Intra-Bar Mud Trends

Fraguency (%)
Frequency (%)

T e e W T e b e S T Average thickness upstream = downstream
Bad/Larnina Thickneasa (cmj BediLaming Thickrsss (cm)

FHB Mud Beds (Upstream) FHB Mud Beds (Downstream)

|
=28 n=39 :
I Average thickness upstream < downstream

Frequancy (%)

Frequency (%)

bedLamina Thicunens o) " bedLamina Tricknees (omh Average thickness upstream < downstream

WHI Mud Beds [Upstraam}

15 S0 M3 050 SN0 =100 =1 %5 A0 400 30E0 SO-100 = 100
BediLaming Thickreas (cmi) BadiLarmina Thickness [cm)

WHI Mud Beds (Downstream)

n=21




MMI Sand Beds (Upstream)
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Average Thickness vs. Distance Upstream
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» Fresh Water, tidally-influenced: sand beds to 50 cm, mud beds to 15 cm
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Sand-Mud Proportion vs. Distance Upstream
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Seasonal Cyclicity in Fraser River IHS

Quialitative cyclicity in structure and bioturbation, probably seasonal
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Where is the Turbidity Maximum?

Bed thickness distribution!
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Fresh water + tidal zone: sand beds thick and
variable; mud beds are consistently thin

: sand beds are thin; mud

Summ ary beds are generally thick

Brackish water + tidal-fluvial: sand beds thick and
variable; mud beds are generally thin

Upstream to downstream “fining” most
pronounced near turbidity maximum
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