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Abstract

Objectives: A newly derived fully coupled thermo-hydro-geomechanics one-dimensional simulation is used to study the time-dependent
evolution of the fracture aperture during hydraulic fracturing of the anisotropic Woodford Shale. The study aims at quantifying the effects of
the spacing of natural fractures and the temperature gradient between the hotter reservoir rock and the colder fracturing fluid on the efficiency
of the fracture job. The results can then be used to optimize hydraulic fracturing design for the shale reservoir.

Procedures: It has been observed during geological characterization that many natural fractures exist in the Woodford Shale and they are
roughly vertical. During the hydraulic fracturing operation, they may reactivate and join to form fractures with almost parallel branches. Due to
the large vertical and lateral extent of the hydraulic fracture, a section sufficiently far from the wellbore, fracture tips, and fracture joints can be
modeled using the 1D solution.

Results: It was found that with an average natural fracture spacing of 1.2m, a fracturing fluid with the same temperature as the reservoir rock
would create a nominal fracture aperture of 0.84 mm. Furthermore, this fracture will gradually closes due to shale swelling from the fracturing
fluid invasion into the formation so proppant transport will gradually degrade. On the other hand, with a fracturing fluid 60°C colder than the
rock formation, the fracture will gradually widen due to shale contraction as the cold front penetrates into the formation. At the end of the
pumping, the aperture with the colder fracturing fluid is approximately 70% larger than that created with the hotter fluid. It was also found that
the fracture aperture monotonically increases with increasing natural fracture spacing.

Conclusions: It is noted that while a wider fracture aperture promotes proppant transport, it requires more fracturing fluid volume to fill the
same fracture length. In other words, the same pumped fluid volume will create a shorter hydraulic fracture and the impression of a less brittle
formation. Therefore, it is crucial that the natural fracture spacing is taken as an input in the design of hydraulic fracturing jobs. Furthermore,



based on the proppant size and transport characteristics, the temperature of the fracturing fluid must be controlled to optimize both proppant
transport and fracturing efficiency.
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Figure 12. Location of the Wyche Quarry and the drilled well (Google Map).

Figure 13. Natural fractures in the Woodford Shale
are almost vertical, with an average distance of 1.2 m
between fractures (Portas 2009).
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Figure 19. Fracture width as a function of time from fracture opening (Abousleiman et al. 2013).
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Figure 20. Fracture width evolution with time
at different fracturing fluid temperatures
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Figure 21. Importance of fracturing
fluid temperature on fracture width
(time = 1 hour). It can be seen that the
effects of temperature Is of the same
order of magnitude as the effects of the
Young's modulus E; In lamination
direction. E, Is the main controlling
mechanical factor (from Figure 11).

narrower and longer fracture, or
more brittleness.

4. Narrower fracture however
hinder proppant transport
decrease fracture permeabillity.

can
and

5. Fracturing fluid temperature must be
accounted for In hydraulic fracturing
optimization.





