An Integrated Approach to Characterization and Modeling of Carbonate Reservoirs*
G. Michael Grammer!

Search and Discovery Article #50784 (2013)**
Posted February 28, 2013

*Adapted from presentation at Tulsa Geological Society dinner meeting, February 5, 2013
**AAPGO2012 Serial rights given by author. For all other rights contact author directly.

'Chesapeake Energy Chair of Petroleum Geology, Oklahoma State University, Stillwater (michael.grammer@okstate.edu)

Abstract

Carbonate reservoirs are characterized by significant heterogeneity at a number of scales, ranging from exploration to production and enhanced
production scale. An understanding of how primary depositional facies, diagenesis, and the sequence stratigraphic framework control the
development of pores in carbonate rocks, and how the variation in pore architecture influences reservoir permeability is a fundamental process
in the accurate characterization of carbonate reservoirs. In addition, with the ubiquitous use of geostatistical models to define and predict 3-D
reservoir architecture in the subsurface, it has become increasingly important to accurately define the probable geometric distribution of
potential reservoirs and seals at multiple scales to provide geologically based, three-dimensional reservoir models that can be used to develop
dynamic reservoir simulation and flow models. To effectively do this, the challenge is to integrate data on the primary depositional
environment (facies, probable geometry, and susceptibility to diagenetic modification), the sequence stratigraphic framework, and the
petrophysical characteristics of carbonates at multiple scales, utilizing a combination of core, wireline-log, 3D seismic data and the
incorporation of both modern and ancient analogs. Examples from the Michigan Basin and other productive basins provide a means to review
the controls on carbonate reservoir heterogeneity, ranging from the pore architecture scale to geometrical attributes of flow units at the
reservoir-scale and to discuss how these parameters can be incorporated and integrated into the development of viable, petrophysically based
reservoir models of carbonate reservoirs.
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Geologically Constrained
Reservolr Characterization — Is it worth the effort?

“The use of oversimplified geological
models based on data from a limited
number of widely spaced wells is probably
one of the most important reasons for the
failures in predicting field performance.”

Damsleth et al.
JPT (April 1992)

Especially true in carbonates, which are typically
very heterogeneous, both laterally and vertically at both
exploration and production scales!!!




Integrated Reservoir Characterization

Facies

3-D Seismic

Geologic Modeling
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High-resolution
Outcrop analysis
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® Sequence Stratigraphy
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Seqguence Stratigraphy for Reservoir Characterization

Lithostratigraphic Interpretation Sequence Stratigraphic Interpretation
& * & @ * @
Well #1 Well #2 Well #3 Well #1 Well #2 Well #3
Crpss Sectional Vigw Cross Sectional [View

Well #1 Well #2 Well #3 Well #1 Well #2 Well #3
\ Map View ~ Map View
- Graindtgne Distribution Grainstone Distribution

Modified from Weber (1997)

G= Grain-Dominated P= Mixed Grain and Mud M= Mud-Dominated



Composite Photomosaic Reconstruction: Leonardian Through Guadalupian Platform Margins, Northwestern Delaware Basin
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Detailed Facies Mapping from
Ground-truthed Satellite Images
(ex. Exumas, GBB)
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Stratigraphic and Flow
Simulation Modeling

Line of Injectors

Line of Producers

Vertical flow up reef tract
(high Kx, Kz in this model)

Water front moving away from
injectors (green). Note flow
constrained by vertical facies
boundaries.

Courtesy of P.M. Harris



Reservoir Characterization —
An Integrated Approach

Interpretation of lithofacies and depositional
environment

Original porosity & permeability

— modification potential

Sequence stratigraphic framework

Stacking patterns tied to wireline logs

Reservoir geometry (lateral & vertical distribution)
Pore network characterization & petrophysical effects
Distribution of reservoir flow units

Reservoir modeling

Data Input: Seismic (3-D), Wireline Logs, Cores,
Cuttings, Modern and Ancient Analogs, Modeling



Example - Eagle Ford Shale Play

Eagle Ford Drilling Permits Issued

2008 through July 2012
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Explain Lateral and Vertical Heterogeneity
Predict Vertical Compartmentalization
(Seq Strat in Deep Water CO3’s?)



Eagle Ford “Shale”
Vertical Stacking Patterns and
Sequence Stratigraphic Framework

Idealized Facies Succession

Facies 7: Foraminiferal Packstone to Grainstone

Facies 6: Skeletal Packstone to Wackestone

Facies 5: Laminated Inoceramid and Foraminiferal
Wackestone to Packstone

Facies 4: Bioturbated Skeletal Lime Wackestone

Facies 3: Laminated Foraminiferal Wackestone

Facies 2: Weakly Laminated Calcareous
Foraminiferal Mudstone

Facies 1: Laminated Argillaceous Mudstone

Workman and Grammer (2013)



Eagle Ford: Reservoir Facies

_
e Laminated Foram WKkst |

(3-5% ¢ /2-6 D) St

* Late transgressive- to early
highstand- deposits near storm
wave base.

e Light- to medium- grey

 Organic-rich

» Planktonic foram tests form mm-
scaled traction laminae with erosive §
bases indicative of reworking by |
weak contour currents.

Dominant Mineralogy
(Avg. %)
Clays | Quartz | Calcite | (Avg. %)
11.80 | 9.19 | 7147 | 2.46
(n=27) | (n=27) | (n=27) | (n=12)

TOC

Workman and Grammer (2013)



Eagle Ford: Intra-formational Seal

e Foram Pkst/Grnst
(~2% ¢ / 1-2 nD)

e Light grey & highly cyclic (m scale)
e Mid- to upper slope, latest

highstand deposits

o Well lithified beds (3-10’s of cm
thick) of planktonic foram tests.

 Brittle

(Avg. %)

Dominant Mineralogy

TOC

Clays

Quartz

Calcite

(Avg. %)

4.63
(n=15)

7.56
(n=15)

84.19
(n=15)

0.57
(n=2)
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Workman and Grammer (2013)



Nixon #6 T.R. Marshall #1 Hill #1

Sequence Stratigraphy in L "
“deep water” Carbonates

A% Order HFS’s:

- Total of 39 HFS’s,
shallowing-upward
sequences

S3§--

- Thickness related to
structural setting.

S24

- Influence of allocyclic and
autocyclic processes.

S1

- Use for the correlation
and evaluation of the

lateral and vertical
variability and continuity L
of facies belts (potential 2 H é

reservoir units and seals).

Workman and Grammer (2013)
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HILLSDALE CO. _

Example:
Albion-Scipio Trend (HTD)
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Discovered in 1957

Production: >147 MMBO, 260 BCF (A-S)

30mi X 1mi

Developed on 20-acre spacing

Trend development based primarily on structural
sag mapping

Lateral and Vertical Heterogeneity
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Lateral Distribution of HTD in AlbioSc
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Stratigraphic Control on the Distribution of
HTD Reservoirs

Approximate scale I1 m

1km

HTD (®, K) distribution is controlled by primary fabric
and depositional geometries (lateral) in addition to
structural surfaces (vertical).




Stratigraphic Control on the Distribution of
HTD Reservoirs

faciescontrol w_ L\
reservoi /7 = . -

vertical baffle

reservoir g =

fault splay
reservoir

;:_;_'_F’_,f—-_ __.___ e —— Approximate Scale I1m

1km

HTD (®, K) distribution is controlled by primary fabric
and depositional geometries (lateral) in addition to
structural surfaces (vertical).




Silurian (Niagaran) Reefs in the Michigan Basin

e Over 1000 pinnacle reefs discovered

« Good porosity and permeability in various facies but
significant reservoir heterogeneity

* Regional Seal (A-2 Evaporite)

* The reef play iIs the most successful play in Michigan
— production of 475 MMBO and 2.8 TCF of gas

o Ultimate recovery
— 1 billion BOE from over 1,000 pinnacle reefs

e (Gas storage




Regional Setting

Carbonate
Ramp

2 Platform
L 100 mi i < \
y 200 km ; \ .

Depositional Zones of the Silurian Michigan Basin

. Reef Pinnacle / Macomb Water Inlets
Complex Location County

Modified from Briggs and Briggs (1974) & Gill (1985)

(modified from Briggs et al., 1980)

During the Niagaran the Michigan
Basin was a shallow intracratonic
sea measuring 155 mi (250 km)
wide and up to 650 ft (200m) water
depth at basin center.

~30 degrees south latitude

Three 3" order eustatic sea level
changes in Niagaran time

Three depositional zones:
Carbonate Platform
Carbonate “Ramp” with
Pinnacle and Reef Complexes
Deep Basin



Niagaran Reef Reservoir Model (pre-2008)
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*Earlier focus was on models for reef growth and facies distribution

«Stacking patterns start to become recognizable in early models, but
wasn’t focus of earlier studies

*Reservoirs characterized by significant lateral and vertical heterogeneity



Stlurian Sea Level

Three eustatic sea level
fluctuations occurred
during the Niagaran
(Wenlockian) and into
the Ludlovian.

Modified from Ross & Ross, 1996
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3-D Seismic over Niagaran Reef (Northern Trend)

TRC 34 54 i il T T4 TRC
COF 3 i ] I 14 &0F

Toelle et al. (2009)
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Modeling Workflow

Integrate Data from:
1. Wireline Logs from 94 wells
2. Facies data from 32 cores

3. Porosity/permeability from whole core analysis
and minipermeameter

4. Sequence stratigraphic architecture (timelines)

~ Schiumberger
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3rd Order

4th Order

Mudstone

Wackestone

Packstone

Grainstone

Stratigraphic Control on
Porosity and Permeability

increased
& k

decreased
O &k

Ritter and Grammer (2008)



Sequence
Boundary 4

Sequence 3

Sequence
Boundary 3

Sequence 2

Sequence

Boundary 2

Sequence 1

Sequence

Sequence Boundaries — Ray Reef
(tie core to wireline logs and extrapolate)
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Sequence Framework — Ray Reef

Skeletal Outline of the Model constrained by sequence boundaries

Surfaces honor the geometry of the reef from reef crest to the off-reef position

High Resolution porosity, permeability, and facies data incorporated into model
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Algorithm for Modeling Surfaces (SGS)

Sequential Gaussian Simulation Algorithm

(a) CONDITIONING DATA (b) RANDOM LOCATION () LcPp AT @ (d) SIMULATED VALUE
174 26.2 $ 17.1 262 $ 262 4}
®
1.2 21.9 1.2 21.9

Facies

Model consists of three zones:
e 6.8 million 3-D cells per zone
» Cell size of 50 x 50 x 1 ft (x,y,z)
« 200 layers of data

Wold and Grammer (2008)
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Boundary 4

Wold and Grammer (2008)



Facies

B - B’ Cross-Section |k

Incipient Bioherm
Bioherm Core
Reef Core

BN Reef Debris

Skeletal Grainstone

Restricted

B Exposure

*Progradational vs.

Aggradational Growth

\Windward vs. Leeward
Margins

ePotential reservoir intervals

along the windward margin of

the reef complex.

Permeability

Wold and Grammer (2008)



|_ateral Reservoir Property Distribution

= Porosity —w Permeability

1.4

"

0.4

0

Qualman and Grammer (2009)



Characterization of Carbonate Pore
Architecture and Relationship to
Permeability



Carbonates
have varying
pore types
that
influence
permeability




Velocity versus Porosity in Carbonates

I |
_ = Carbonate rocks
6000 -~ < - e Compacted mud samples
£ 5000 "~ > _=5000 m/s _
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2000 " -
Time-average equation
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| I
0 10 20 30 40 50 60
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Anselmetti and Eberli (1999)
Grammer et al. (2006)



Predicting Permeability from Sonic Velocity?

Core Plug Values Core Plug Values

® =10.59% ® =10.50%
K=1.04 mD

Vp = 4866 m/s Vp = 6023 m/s

Thornton and Grammer (2010)



Pore Architecture tied to Petrophysical
Properties — can we Predict Permeability???

Relate rock fabric to pore types by developing
petrophysically significant facies

Relate pore architecture to pore connectivity
(permeability) to determine reservoir quality

Use laboratory and log-measured sonic velocity to
establish a first-order relationship between sonic
velocity and pore type/pore network connectivity

Tie to Wireline Logs



Quantifying Pores:

ImagePro Plus

Color-cube
segmentation

Can measure
parameters for each
pore
— Area, length, width,
roundness, perimeter
Pore parameters
(measures of pore
architecture) are
calculated

Digital Image Analysis




Image Analysis to characterize size, shape and
distribution of pores in thin section




Average percent error between actual and predicted
p-wave velocity = 5.31%

7500

7000

6500

6000

5500

Actual P-Wave Velocity (m/s)

5000

4500
4500 5000 5500 6000 6500 7000 7500

Predicted P-Wave Velocity {m/s)

Ve = 388.626y + 3.8904,, — 85.650% — 62,8125/, — 270.858In

+ 5694.809



Integrating porosity, P- and S-wave velocities, density and DIA parameters

100000
10000
1000
100

10

1

0.1
0.01
0.001

0.0001
0.0001 0.01 1 100 10000

Measured Permeability {md)

Calculated Permeability {md)
Ink = E.HDEITLL; + 2.263Ind — 41.722inp, + 3.955Iny — 0.926inP0OA

+ 1.005inAR + 0.697InV, — 0.310inDS5 — 7.013




Summary — General Thoughts and Trends
in Carbonate Reservoirs

Reservoir quality has a direct correlation to primary depositional facies.

Because of this, the predictability of reservoir distribution, both laterally
and vertically, may be enhanced by the development of a sequence
stratigraphic framework.

Porosity and permeability (i.e., reservoir quality) is a direct function of
pore architecture, which again is often tied to primary depositional facies
and/or position within a sequence stratigraphic framework.

Detailed characterization of pore architecture should lead to a better
understanding of the 3-D distribution and connectivity of pores — image
analysis and CT scans, along with laboratory-measured sonic velocity, may
lend insight into the acoustic properties of different reservoir and non-
reservoir facies.

Modern and ancient analogs may provide critical understanding of
process, geometry and evolution of carbonate reservoirs.
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