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Abstract 

 

Uncertainty in a migration based approach to surface and near surface microseismic monitoring occurs in two ways: uncertainty in the validity 

of detected events and uncertainty in the estimated position of the event. Synthetic modelling and comparison to case studies show that sign-to-

noise-ratio is a key indicator of both types of the uncertainties. In this paper, we present an analysis of both types of uncertainty using synthetic 

modelling to illustrate the performance characteristics of the migration process in terms of signal detection and false-alarm rates, along with 

uncertainties in positional estimates.  

 

Examples from two case studies will illustrate that this kind of performance is achievable in actual monitoring surveys. Signal-to-noise-ratio 

(SNR) is a key indicator of the uncertainty in migration-based imaging of microseismic events. Reliability, in terms of the ability to detect the 

complete set of events is a nearly binary function of SNR. Events with SNR above a threshold of 2-3 are readily detected, while events with 

SNR below the threshold are missed. Positional uncertainties likewise are driven by SNR. While vertical uncertainty is more sensitive to noise, 

both horizontal and vertical uncertainties decrease rapidly with increasing SNR. 

 

Introduction 

 

Unconventional resource plays demand intense drilling and reservoir stimulation programs, and economic exploitation requires these resources 

be employed efficiently. Microseismic monitoring can provide important information to help optimize well placement and stimulation 

programs (Maxwell, 2010). Microseismic monitoring with surface arrays offers several advantages over borehole monitoring. Surface arrays do 

not require dedicated monitoring borehole, they offer a much larger field of view allowing long laterals to be monitored in their entirety and 

consistency (Duncan and Eisner, 2010). Moreover, surface deployment of large 2D or 3D arrays captures a large portion of the emitted 

microseismic wave field, enabling well-constrained event imaging with only compressional waves significantly reducing the sensitivity to 

velocity model assumptions. Furthermore, these arrays are well disposed for permanent monitoring of multiple wells. 
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The primary challenges in surface monitoring are: 1) increased distance between event hypocenter and receiver reduces signal size, 2) 

increased noise levels at surface. While borehole monitoring schemes typically rely on detection of events in the recorded traces followed by 

event location, the reduced signal-to-noise-ratio (SNR) at the surface does not generally allow detection of signals in the unstacked data (e.g., 

Zhebel et al., 2010). One approach to this problem is to apply a migration based imaging scheme to simultaneously improve the SNR and to 

position events at their proper location. In this approach, one must then rely on signal detection after migration, which leads to two levels of 

uncertainty: 1) uncertainty in the detection of signal, 2) uncertainty in the localization of the event. 

 

In this paper, we present an analysis of both types of uncertainty using synthetic modeling to illustrate the performance characteristics of the 

migration process in terms of signal detection and false-alarm rates, along with uncertainties in positional estimates. Examples from two case 

studies will illustrate that this kind of performance is achievable in actual monitoring surveys. 

 

Imaging Method 

 

Our migration-based approach to microseismic imaging involves three steps: downward continuation by beamforming, followed by event 

detection, then event localization (estimation of event location and timing). Beamforming is accomplished by a progressive scan of potential 

hypocenter locations in the subsurface. For each potential location, diffraction curves for compressional waves are computed, assuming a 

known velocity field. The recorded data traces are then summed across the array along the diffraction curves for the entire trace length. This 

beamformed trace forms a continuous estimate of the potential source at the subsurface location over the course of the recording. 

 

As microseismic events are transient events, the next step is to identify and extract potential events from the continuous beamformed trace. 

Potential events are detected by an amplitude ratio test. The ratio of RMS amplitude within a sliding event window (the signal estimate) to the 

RMS amplitude in a trailing window (the noise estimate) is used to compute an estimated SNR. If the SNR exceeds a specified threshold, the 

event window is marked as a potential trigger. 

 

Once all triggers are detected over all potential hypocenter locations, the catalog is analyzed to localize the event. Due to the finite extent of the 

array and the restriction of the array to the near surface, the point response of the migration will cause a single event to produce triggers spread 

across many subsurface locations. For a surface array with an aperture twice the depth of interest, this point spread function will be elongated 

in the vertical direction by roughly a factor of three compared to the horizontal response. This elongated shape is primarily an expression of the 

trade-off between time of the event (i.e., origin time) and depth of the event when origin time of the event is unknown (Eisner et al., 2009). The 

actual size of this response is determined by the frequency of the received signal, the velocity of the overburden, as well as the array 

configuration. The localization step consists of identification and evaluation of triggers related to a given event and a secondary diffraction sum 

along the time/depth trade-off trajectory (Duncan et. al., 2010). This secondary diffraction sum, allows us to estimate the timing and location of 

optimal energy focus and hence the event position. 

 

 

 

 



Uncertainty 

 

Leaving aside uncertainty in the assumed velocity model, uncertainty arises in two primary contexts in this process. The first is in the detection 

step: How certain can we be that the detected events are, in fact, true microseismic events and not spurious noise? The second relates to the 

event localization: How accurate are the positional estimates, especially in the vertical direction? 

 

Detection theory provides some insight into the first question (Johnson and Dudgeon, 1993). The basic test in detection theory is the choice 

between two hypotheses: H0 = signal absent, and H1 = signal present. The Neyman-Pearson lemma (1933) shows that it is possible to construct 

a likelihood ratio test to specify this choice, which minimizes the chances for incorrectly choosing H1 when there is no signal present (a false 

alarm). The likelihood ratio test can be equivalently specified by a sufficient statistic, which is compared to some threshold value, where values 

of the statistic below the threshold indicate no signal present, and values above the threshold indicate the presence of signal. By specifying the 

test in this manner, one effectively fixes the probability of false alarms in the system. In general, it is not possible to choose a statistic/threshold 

combination that reduces the probability of false alarms to zero, so one must accept some probability of false alarms. In practice, one must 

balance the false alarm probability against the probability of failing to detect valid signal. 

 

The SNR value we compute in the detection phase is such a sufficient statistic for a likelihood ratio test. The actual false-alarm probability in 

the system is determined by the distribution of noise after beam forming. If, for example, one were to assume the noise is Gaussian and the 

trailing window RMS measure is a valid estimate of the standard deviation of this distribution, then a SNR threshold value of two would result 

in a false-alarm probability of ~2.5% (the approximate cumulative probability of the Gaussian distribution above two standard deviations). 

Thus, for every 1,000 windows examined where there is in fact no signal, we should expect 25 false alarms with SNR greater than two. If we 

restrict ourselves to windows with SNR greater than three (false alarm probability of ~0.1%), we should expect to see only one false alarm. 

Therefore, under the assumptions listed above a SNR increase results in a decrease of the likelihood of a given trigger being a false alarm. 

 

While it is difficult to assign a certainty to an individual detected event, detection theory does supply some useful insights to the event catalog 

as a whole. First, we know that the event catalog will contain some percentage of false alarms. Second, certainty in the event should increase 

with estimated SNR. 

 

Estimating an event location ultimately comes down to selection of an optimal focusing point. Uncertainty in this estimate is driven by the 

effect of noise in this selection process. While the particulars of how noise interacts with the selection process are specific to the selection 

algorithm, we can predict that noise will tend to move the estimated location along contours of the migration point response and that the impact 

of noise should decrease with increasing SNR. 

 

Synthetic Modeling 

 

In order to assess both types of uncertainty, we constructed a synthetic data set that was used in our imaging algorithm to locate events with 

varying amounts of noise. The synthetic data set consisted of a surface array of 1,000 channels arranged in a radial pattern of eight arms equally 

spaced in azimuth. Each arm consists of 125 channels spaced at 100 feet with an initial offset of 1,000 feet from the center of the array resulting 



in a maximum offset of 13,400 feet. 100 events at a depth of 10,000 feet and located near the center of the array were modeled using a 30 Hz 

center frequency minimum-phase Ricker wavelet with a constant moveout velocity of 12,000 feet/s. 

 

For a range of input SNR levels (0.02-20), Gaussian noise was added to the modeled data and imaged with the migration routine with the 

detection threshold set at two. The event catalog output by the migration was then compared to the known origin times and locations of the 

modeled events. A detected event with an origin time within 100ms of a modeled event was considered a true detected event (a hit) while all 

other events are considered false alarms. 

 

Figure 1 shows number of hits and false alarms for each output SNR level. For SNR > 2, all 100 of the seeded events were detected. For SNR < 

2, the detection rate rapidly drops, effectively reaching zero for SNR < 1. This behavior suggests that we can use SNR as an indicator of 

reliability in the performance in the algorithm. Above some SNR threshold, valid events are reliably detected, while below this threshold valid 

events are missed. 

 

For all output SNR levels, the number of false alarms remains approximately constant at a value of 10. While constancy is expected from 

detection theory, this value is much lower than one might expect for a 2.5% false-alarm rate. The 100 events were seeded at 2-second intervals 

into a 200-second long data set sampled at 4ms. In the triggering routine, the event window moves forward sample by sample. Thus, we 

examine 50,000 potential triggers and should expect 1,250 false alarms in the triggering phase. However, the ten false alarms shown in Figure 

1 are those that were triggered but also passed the event localization step. Part of the event localization step is a requirement that the triggers 

show consistency over the time/depth trade-off trajectory. If the algorithm fails to find this consistency, the trigger is discarded. Thus, we add 

further constraint against false alarms. 

 

Figure 2 shows the standard deviations of positional errors computed from the matched events (hits) shown above. Not shown in the figure are 

the average errors, for SNR > 1 average errors are very close to zero for all three dimensions indicating the estimates are unbiased. For SNR > 

1, we see an exponential decline in variability of the errors, with horizontal and vertical uncertainties converging to near zero for very high 

SNR values. Variability in X and Y are approximately equal and 2-3 times smaller than variability in Z. The rate of decline in variability in all 

three dimensions is approximately the same. The estimates with SNR < 1 should be discounted as it contains only two hits, and origin time 

errors associated with these two hits are significantly larger than the other hits (50ms vs. 5ms), indicating these are not likely valid matches. 

 

As predicted, sensitivity to noise in the vertical direction is greater than in the lateral direction. The relative magnitude of the vertical and 

horizontal sensitivity is roughly proportional to the elongation of the migration point spread response. Furthermore, the impact of noise on the 

positional estimates diminishes rapidly with increasing SNR. 

 

Case Studies 

 

Table 1 summarizes the analysis of uncertainty in two calibration studies from separate hydraulic fracture monitoring surveys in two different 

shale plays in North America. Both utilized radial surface arrays similar to the one used in the synthetic modeling. Approximately 1,000 

channels were used in each; the channel spacing was varied to maintain an aperture twice the depth of interest. In both cases, perforation shots 



were used to calibrate the velocity and static corrections for the array. Once the calibration was determined, the imaged positions of the 

detected perforation shots were compared to the measured location of the gun. The SNR range for the set of shots and the standard deviation of 

the errors are reported. The estimated uncertainties in positions may be subject to a systematic bias as measured locations of perforation shots 

can be offset due to errors in deviation surveys (see Bulant et al. 

2007). 

 

In Case #1, 85 shots were imaged over a pad of five lateral wells. Even though all the shots used similar charges, the SNR range varied from 3 

to 10, with 60% of the shots having a SNR < 5. The difference SNR is likely result of variable conversion of charge energy to seismic energy 

as also observed by Chambers et al. (2010). We consider SNR < 5 to be low SNR for calibration. Average errors in all three dimensions were 

less than 30 feet. 

 

In Case #2, 28 shots were imaged over a single lateral well. Although the target here was much deeper than the first case, the SNR range is 

considerably higher, with 78% of the shots having a SNR >15. We consider this to be very good SNR for calibration. Average errors in all 

three dimensions were less than 20 feet. 

 

While the positional uncertainties in both cases are larger than those shown in the synthetic model, they do show a similar behavior. Case #2, 

which is characterized by a larger SNR, shows a smaller uncertainty indicated by a smaller standard deviation of the errors. Case #2 also shows 

similar uncertainties in horizontal and vertical directions comparable to the convergence noted in the synthetic model. We believe the increased 

uncertainty compared to the model is due to the need to estimate velocity and static corrections and the presence of coherent noise in real data. 

In both cases, the uncertainties reported here were deemed acceptable by the operator. 

 

Conclusions 

 

Signal-to-noise-ratio (SNR) is a key indicator of the uncertainty in migration-based imaging of microseismic events. Reliability, in terms of the 

ability to detect the complete set of events is a nearly binary function of SNR. Events with SNR above a threshold of 2-3 are readily detected, 

while events with SNR below the threshold are missed. Positional uncertainties likewise are driven by SNR. While vertical uncertainty is more 

sensitive to noise, both horizontal and vertical uncertainties decrease rapidly with increasing SNR. 

 

While SNR can be used to infer the relative likelihood that given event is real, false alarms will occur. Discriminating the real event from the 

false will require additional information beyond SNR. 

 

While synthetic modeling is useful in assessing the performance characteristic of the imaging method, a number of simplifying assumptions 

were made that differ from actual application of the method. First, our model assumed that travel-times were known exactly. In practice, 

velocity and static corrections must be estimated from calibration shots (sources at known locations in the subsurface). While travel time errors 

are most likely to decrease the SNR after migration, long period errors in travel times could cause spurious focusing and add uncertainty.  

 



Secondly, the model assumed the additive noise was Gaussian. While this is a reasonable first approximation, it does not take into account 

coherent noises, which are ubiquitous in surface microseismic monitoring. Appropriate preprocessing can reduce the impact of coherent noise, 

but residual coherent noise will trigger false-alarms. Moreover, the number of false alarms rejected in the event localization step will likely not 

be so high, as coherency in the noise will imply some additional consistency among triggers not seen in the model.  
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Figure 1. Count of detected events as a function of SNR after migration. Detected events matched to modeled events are shown as hits; events 

without a match are shown as false alarms. 



 

 

 

  
 

Figure 2. Standard deviation of positional errors as a function of SNR after migration. 



  

 

 

 

Table 1. Summary of uncertainty in calibration errors in two case studies. 

 

 


