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Abstract 

 

Previous geochemical measurements at three operational or proposed CO2-EOR projects; Rangely, CO, Teapot Dome, WY, Weyburn, SK are 

presented as indicators of effectiveness of selected MVA methods. Seasonal fluxes and soil gas concentrations of carbon-containing gases have 

been determined by the author at Rangely and Teapot Dome. Similar measurements were made at Weyburn by a group led by the British 

Geological Survey. Methane and light hydrocarbon measurements will be more effective than CO2 for monitoring of EOR projects, whereas 

CO2 measurements have dominated proposals at pure sequestration projects. Measurement of inert gases as indigenous tracers in soil gas and 

shallow ground waters for monitoring will be effective in both pure sequestration and CO2-EOR projects. Isotopic measurements provide 

stronger data necessary for verification. In climates with strong seasonal variations, carbon-containing gas fluxes can vary by a factor of ten 

and shallow soil gas concentrations by a factor three, primarily due to seasonality of shallow biological processes. Winter or dry season 

measurements allow improved recognition of a deep source component. Modeling of CH4 and light alkane vertical migration at Rangely 

indicated an estimated improvement of the signal to noise ratio by a factor of five during winter measurements. A first-order estimate of deep 

source gas leakage at Rangely is <170 tonnes of CO2 and 400 tonnes of CH4 annually. Trace CH4 leakage at Teapot Dome was detected over 

faults. An IPAC-sponsored study over an alleged localized leak at Weyburn used carbon-containing gases to verify the absence of leakage at 

this location. The results support the particular strength of isotopic measurements on inert gases in shallow groundwater for purposes of 

verification. 
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DETECTION OF GAS MICROSEEPAGE (Klusman, 2011)
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Field Condition,  Parameter  Methane Ethane Propane

Pre-development, hydro-

static pressure 95% C
1
,

4% C
2
, 0.5% C

3

Soil gas conc. at 61 m (ppmv)  4523        200       594

Flux to surface (g m
-2

day
-1

)     0.742       0.029    0.073

One year pressurization,

92% CO
2
, 7.6% C

1
,

0.34% C
2
, 0.04% C

3

Soil gas conc. at 61 m             365            211       557

Flux to surface                      0.060        0.031     0.069

15 years operation at 24.82 MPa

Soil gas conc. at 61 m             361           213       559

Flux to surface                     0.059        0.031     0.069

SUMMARY OF MODELED COMPOSITION

AND FLUXES AT RANGELY



CO2 and CH4 fluxes measured at 10-m intervals

A chamber

B chamber

10 m

C chamber

20 m

+ soil gas gradient for CO2,

CH4, δ¹³CCO2 at 3 depths

between A and B
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SELECTION OF “INTERESTING” 

LOCATIONS FOR 10-M HOLES

• Magnitude and direction of both CO
2

and CH
4

fluxes,

• Magnitude and gradient of both CO
2

and CH
4

in soil gas profiles,

• Isotopic shift in 60-, and 100 cm soil 

gas CO
2

from atmospheric CO
2
,

• Selected locations with microseepage

evident, and with microseepage

absent; soil gas contributes more to 

the selection process than fluxes.





Tubing and thermocouples

from 5 depth intervals in

10-meter holes
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SIMPLE DIFFUSIONAL TRANSPORT OF CH
4

Rangely – Anomalous 10-m hole 01; Winter 2001/02



DIFFUSION + METHANOTROPIC OXIDATION

Rangely – Anomalous 10-m hole 01; Winter 2001/02



FIRST-ORDER METHANOTROPHY RATE
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Measured and Modeled Methanotrophy
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Dilution of reservoir gas
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OTHER GASEOUS SPECIES –

CARBON-14 CONTENT OF CARBON-

CONTAINING GASES (VERIFICATION)

• Pros – a) Definitive measurement of 

proportions of deep-sourced ancient gases 

and atmospheric-derived gases, b) No 

biological influence , c) low seasonal 

variance at depths of 3-m or more.

• Cons – a) Strictly a laboratory 

measurement with fairly complicated 

sampling, laboratory purification, and 

analytical protocol, b) food based CO
2

is 

enriched in carbon-14 to approximately 

atmospheric concentration, c) laboratory 

turn-around can be slow.
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ESTIMATION OF CH
4

MICROSEEPAGE INTO THE 

ATMOSPHERE AT RANGELY –

(a start on ACCOUNTING)

• The gross CH
4

microseepage into the 

atmosphere over 78 km
2

is 700±1200 

tonnes year
-1

using the winter rate*

• The net CH
4

microseepage into the 

atmosphere is 400 metric tonnes year
-1

±?, subtracting the control area from 

the on-field data.

• *non-parametric estimated rate is positive with α = 

0.015.



COMPARISON OF MODELED AND

MEASURED METHANE FLUX

The modeled CH
4

flux from the Rangely reservoir

presented earlier was 59 mg m
-2

day
-1

.

Summer: 3.59/59 = 0.06, suggesting that ≈ 94%

was oxidized in the unsaturated zone; Rangely

field only; 4.86/59 = 0.08 or ≈ 92% was oxidized.

Winter: 17.8/59 =0.30, suggesting that ≈ 70%

was oxidized in the unsaturated zone; Rangely

field only; 25.1/59 = 0.43 or ≈ 57% was oxidized. 

Dividing 0.43/0.08 = 5.4; The signal:noise ratio

improved by a factor of 5 in the winter.



SUMMARY OF SURFACE GEOCHEMICAL

MEASUREMENTS AT WEYBURN

British Geological  07/2001 CO
2

flux, soil gas      

Survey +Italian, CO
2
, CH

4
, light HC, Rn

French 09/2001 ditto

investigators 09/2002 ditto

10/2003 ditto + He

10/2004 ditto + He

10/2005 ditto + He

KERR Farm

Lefleur 08/2010 soil gas CO
2
, CH

4
, LHC

02/2011 ditto

Gilfillan+Haszeldine06/2011   GW inert gas + isotopes

Romanak 8-09/2011 soil gas CO
2
, CH

4
, LHC, He

BGS + It., Fr. 10/2011 ditto + He

Wolaver et al. 2011 Geohydrology



QUALITATIVE INDICATOR OF POSSIBLE 

ABSENCE OF GAS LEAKAGE AT 

KERR FARM WELL

Date pH HCO
3

-
(mg/L)

10/2002 7.8 308

05/2003 8.0 211

08/2003 7.6 272

11/2003 7.8 259

06/2005 8.0 262

07/2008 8.26 251

06/2011 7.8 351

06/2011 - 376, 410



SUMMARY OF LEFLEUR FINDINGS

AT KERR FARM

· Both CO
2

and CH
4

had lower concentrations in

winter measurements relative to summer,

· Minor C
2
+ light hydrocarbons were found at

2-3 locations out of 30 locations measured,

· An anomalous CO
2

location had a δ
13

C of 

-23.5‰, similar to the injected CO
2

from Buelah,

ND coal gasification plant,

· High correlation of CH
4

to C
2
H

6
at a few locations.

LEFLEUR CONCLUSION: There is leakage of 

reservoir gases to the surface on the Kerr farm.



PROCESS CONTROLLED O
2
-CO

2 

(from Romanak, 2011)
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He – Ne Isotopic Ratios (from Gilfillan and 

Haszeldine, 2011)  VERIFICATION



He – Ar Isotopic Ratios (from Gilfillan and

Haszeldine, 2011) VERIFICATION



Romanak (2011),

Gilfillan and Haszeldine (2011),

Beaubien et al. (2013)

CONCLUSION: NO LEAKAGE ON

THE KERR  FARM



SOIL PROCESSES OPERATING WITH

RESPECT TO METHANE
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Klusman, 2011- Alternative Interpretation

of Lefleur, 2010, 2011 Data

• Injected CO
2

from Buelah, ND reacts with

reservoir carbonate rock with δ
13

C of ≈ 0‰

to produce a produced fluid of -10 to -12‰.

The soil gas δ
13

C of -23‰ is consistent with

normal soil respiration, not leakage.

• The relative concentrations of CO
2

and CH
4

in summer and winter are consistent with a

methanogenic source for CH
4
. Slowing of

microbiological processes in winter reduces

the CH
4

concentration. If there was leakage,

there would be increased CH
4

in winter due

to slowing of methanotrophic oxidation.

CONCLUSION: Lefleur data is also consistent

with a conclusion of “No Leakage” on Kerr farm.



CONCLUSIONS

• Monitoring protocols will need to be developed for 

each project that reflects climate, geology, and 

accommodates cultural interferences,

• Methanotrophic oxidation (methanotrophy) will be 

important in the attenuation of hydrocarbon 

microseepage at CO2-EOR projects,

• Measurement of carbon-containing gases will 

require liberal use of isotopes and possibly C-14,

• It is possible to make estimates of gas 

microseepage over CO2-EOR fields and presumably 

over future pure sequestration projects,

• Measurement of carbon-containing gases will 

require liberal use of isotopes and possibly C-14.
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