Production Focused Seismic – Applying Seismic for Well Productivity Analysis and Completion Optimization*

Sean Boerner¹ and Ross Peebles¹

Search and Discovery Article #41212 (2013)**
Posted October 18, 2013

Discussion

Modeling of productivity bypasses prediction of porosity, water saturation, and other variables that are more directly related to reservoir productivity

Well Productivity and Prospectivity Analysis (WPPA) Workflow

There is a heavy reliance on statistics

Need to ensure that you have enough data to have robust correlations and models

Stationarity Assumption

Just because you get a good correlation coefficient doesn't mean that you have a good model!

Outliers

Over-fitting of the data

Too many variables in the model

Be sparse with the number of variables versus the number of independent observations

Extracting attributes and building models using multiple observations along the wellbore (3D attribute and production values) produces consistently more reproducible models than averaging the attributes for each well (2D attribute and production values).

Accurate velocity models for depth conversion are critical to correlate seismic attributes to production intervals at the right depth

Studies we have done show the importance not only of having the right (X, Y) location for a well, but the correct layer and stratigraphic depth

There are variations in productivity in 3D Not all stages along the reservoir path will be productive

Have a tool to predict productivity

^{*}Adapted from oral presentation given at AAPG Geoscience Technology Workshop, Sweet Spots, Reservoir Compartmentalization, and Connectivity, August 6-7, 2013, Houston, Texas

^{**}AAPG© 013. Serial rights given by author. For all other rights contact author directly.

¹Global Geophysical Services (Sean.Boerner@globalgeophysical.com; ross.peebles@globalgeophysical.com)

Weigh the cost of fracing the stage versus the revenue from the expected production Design the completion to optimize the profitability of the well

Selected References

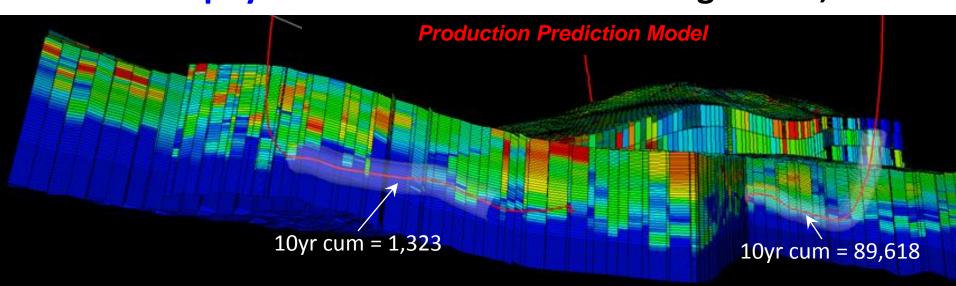
Lock, B.E., and L. Peschier, 2006, Boquillas (Eagle Ford) upper slope sediments, West Texas: Outcrop analogs for potential shale reservoirs: GCAGS Transactions, p. 491-508.

Martin., R., J. Baihly, R. Malpani, G. Lindsay, and W.K. Atwood, 2011, Understandin production from Eagle Ford – Austin chalk system: SPE 145117.

Berg, R.R., and A.F. Gangi, 1999, Primary migration by oil-generation microfracturing in low-permeability source rocks: Application to the Austin Chalk, Texas: AAPG Bulletin, v. 83/5, p. 727-756.

Callarotti, G.F., and S.F. Millican, 2012, Openhole multistage hydraulic fracturing systems expand the potential of the Austin Chalk: SPE 152402.

Laubach, S.E., J.E. Olson, and M.R. Gross, 2009, Mechanical and fracture stratigraphy: AAPG Bulletin, v. 93/11, 1413-1426.


Corbett, K., M. Friedman, and J. Spang, 1987, Fracture development and mechanical stratigraphy of Austin Chalk, Texas: AAPG Bulletin, v. 71/1, p. 17-28.

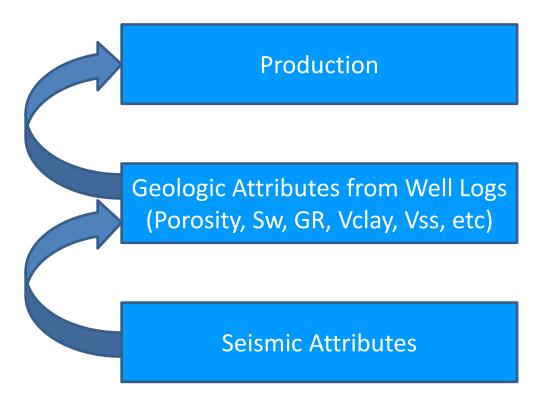
Production-focused Seismic - Applying Seismic for Well Productivity Analysis and Completion Optimization

Sean Boerner Ross Peebles Global Geophysical

AAPG Workshop August 6-7, 2013

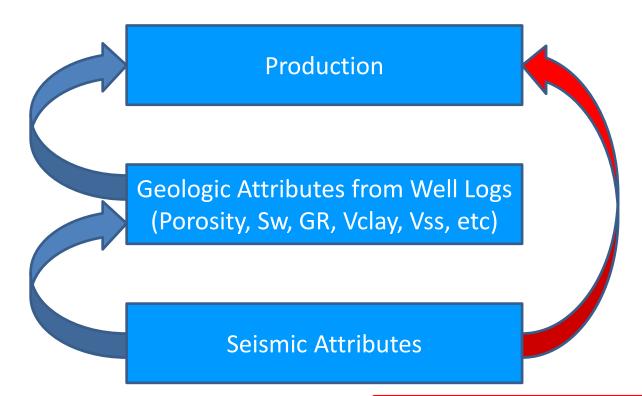
Outline

- Goals
- Assumptions
- Workflow
 - Seismic Attributes
 - Pre-Stack Inversion
 - Velocity Model for Depth Conversion
 - Multi-Attribute Analysis
 - Well Placement
- Example
- Discussion



Goals in the Workflow

A **VERY** simplified overview of the process...


Goal is to understand production (\$\$\$)

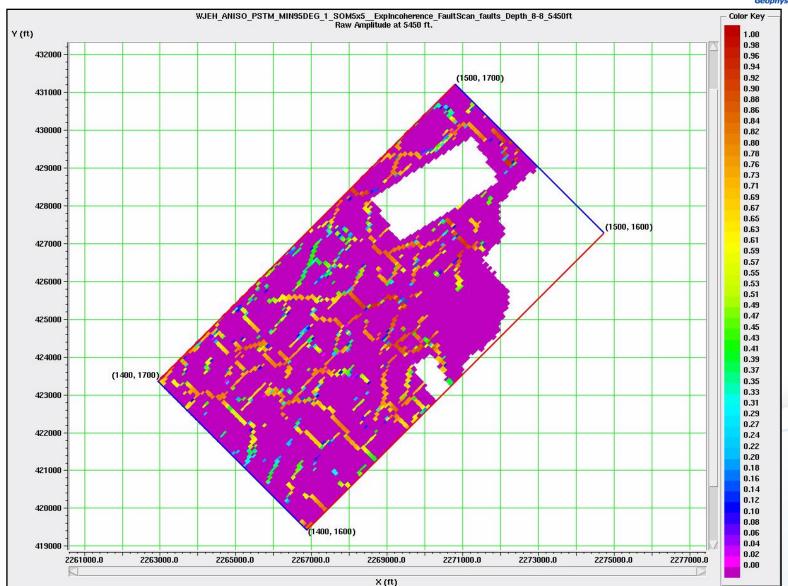
Goals in the Workflow

A **VERY** simplified overview of the process...

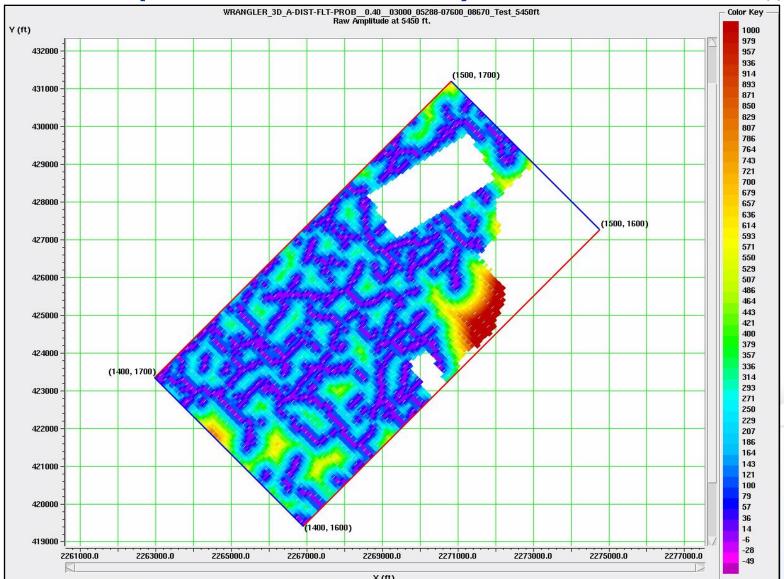
We look for direct seismic attribute correlation to production (i.e., **Proxies for Producibility**)

Assumptions

- You have enough independent observations from well data to build robust statistical models
 - Possibility of false correlations when using
 - Too little data
 - Too many attributes
- Stationarity assumption
 - Statistics are the same at all points in space and time


Seismic Attributes

- Attributes calculated on the seismic stack
- Curvature & Incoherence highlight discontinuities in the seismic volume
- Fault Scan uses incoherence as input
- Distance from faults uses the fault scan attribute as input
- Spectral Decomposition attributes appear to be related to zone thicknesses


Depth Slice from the Fault Probability Volume

Depth Slice from the Distance to Fault Volume (Threshold = 0.4)

Pre-Stack Inversion

- Gather Conditioning of offset gathers
- Conversion to angle gathers
- Angle dependent wavelet extraction
- Background Model Building with both wells-only and seismic velocity background models
- Pre-stack Inversion
 - Acoustic Impedance
 - Shear Impedance
 - Density
- Post-Inversion processing
 - Young's Modulus
 - Shear Modulus (Rigidity)
 - Bulk Modulus
 - o Lambda, Lambda-Rho, Mu, Mu-Rho

- o Poisson's Ratio
- Vp/Vs Ratio
- Relative attributes of all of the above

Velocity Model for Depth Conversion

- Seismic attributes are frequently in the time domain, and wells are in depth
- Need accurate depth models for Well Productivity and Production (WPPA) analysis
 - Correlate seismic attributes with production
 - Use seismic attributes over completed well intervals
 - Completed well intervals must correlate with the seismic volumes to be valid
- Build velocity model that incorporates:
 - The well to seismic ties
 - The seismic velocity field
 - Tops at wells that aren't tied to the seismic

Frequently have only a few wells that you have tied to the seismic, but there can be many wells with logs and tops in depth

Multi-Attribute Analysis

- Global Geophysical Services
- Goal is to predict production attributes using seismic and other volume-based attributes over the completed intervals
- Works with depth volumes
 - All inversion attribute volumes
 - All structural attribute volumes

Can have 60 to 100+ seismic attribute volumes from various sources

- Remove independent variables that are correlated with each other
- Extract attributes along the wellbore and use these log-scale values to build the statistical model (3D Data (X, Y, Z))
- Produce *multiple* productivity models (3D volumes) using different combinations of attributes
 - Extract the productivity model values at the well locations to verify the model!
 - Average the models to derive a most likely model
- Need a way to sort through all of the independent variables to quickly find a combination that produces a robust model
 - Step-wise regression with blind well testing

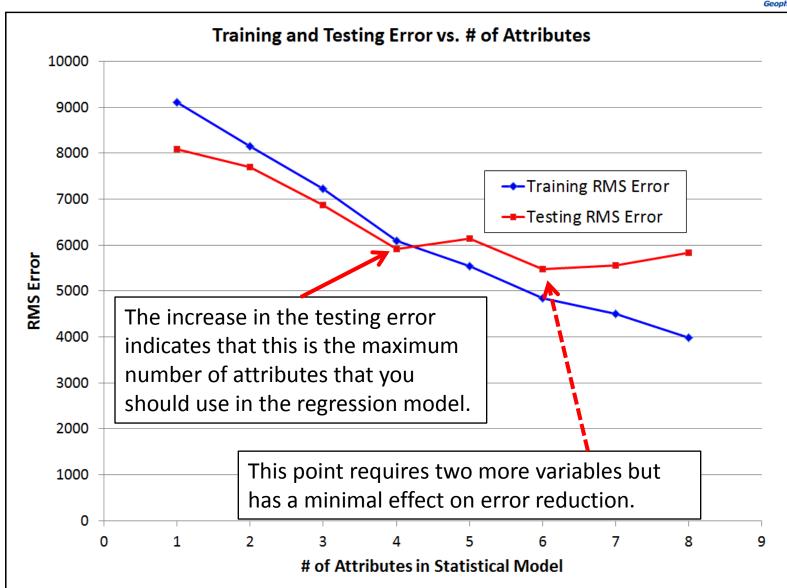
Stepwise Regression with Blind Well Testing

- A tool to quickly sort through many combinations of attributes to find those that best predict productivity
 - Stepwise Regression
 - Incorporates Blind well testing
 - Produces statistics to limit the number of variables that are input into the model
 - Ensures a more robust model that has predicted wells that weren't used to build the model
- Can be used to identify outliers to be eliminated
- Converts the independent variables (seismic attributes) using various parametric, non-linear transforms

Stepwise Regression with Blind Well Testing

Advantages of the tool

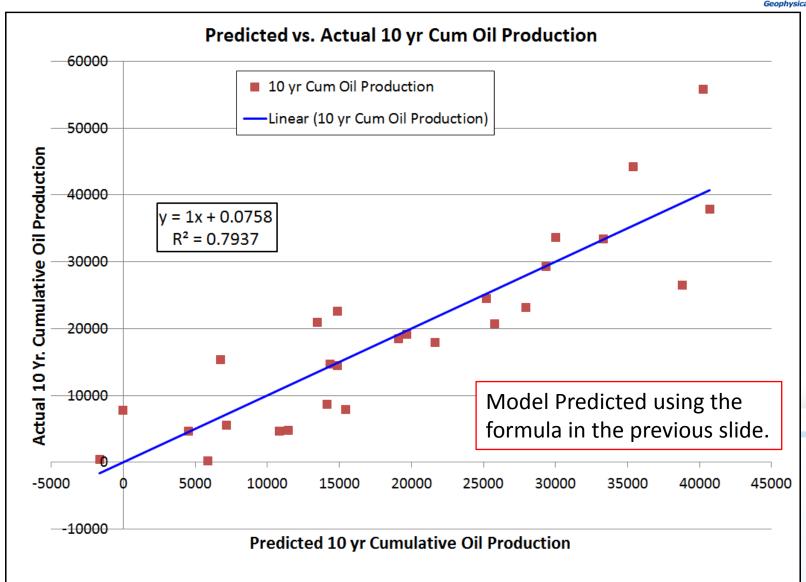
- Can quickly sort through hundreds to thousands of variables to find the ones that are most relevant to the production indicator that you are trying to predict
- Actually gets the formula for the transform between the independent and dependent variables
 - Can use resulting formula in any software that has an attribute calculator
- Performs blind well testing
 - For every well, builds a model using (N-1) wells to predict the well that is left out.
 - Training RMS Error The error between the predicted and actual dependent variable from the model using N-1 wells
 - Testing RMS Error The error between the predicted and actual dependent variable from the model using the one well that was left out of the model
 - Allows the user to select a minimal set of independent variables to avoid overfitting the data.


- 27 Wells
- Dependent Variable to predict
 - Well Cum Oil 10 Yr Cum
- Independent Variables (58 Attributes):

Index	Variable Name	Index	Variable Name	
0	WBI Top MD (ft)	20		
1	WBI Base MD (ft)	21	Mu	
2	Angle - DownAngle	22	Acoustic Impedance	
3	Angle - NorthAngle	23	Vp/Vs	
4	Angle - EastAngle	24	Mu Rho	
5	SpecD - SpecD_22(Hz)	25	Time Dip -dip	
6	SpecD - SpecD_18(Hz)	26	FracFactor	
7	SpecD - SpecD_10(Hz)	27	Dip	
8	SpecD - SpecD_42(Hz)	28	Density	
9	SpecD - SpecD_66(Hz)	29	Poisson's ratio	
10	SpecD - SpecD_14(Hz)	30	Time-domain Curvature - Krms	
11	SpecD - SpecD_34(Hz)	31	Time-domain Curvature - Kmin	
12	SpecD - SpecD_50(Hz)	32	Time-domain Curvature - Kpos	
13	SpecD - SpecD_26(Hz)	33	Time-domain Curvature - Kmean	
14	SpecD - SpecD_30(Hz)	34	Time-domain Curvature - Kneg	
15	SpecD - SpecD_38(Hz)	35	Time-domain Curvature - Kmax	
16	SpecD - SpecD_58(Hz)	36	Time-domain Curvature - Kmaxmag	
17	SpecD - SpecD_62(Hz)	37	Azimuth - HorzAng	
18	SpecD - SpecD_54(Hz)	38	Azimuth - Kmaxmag_azimuth	
19	SpecD - SpecD_46(Hz)	39	Azimuth - dip_azimuth	

40 Azimuth - Kmax azimuth 41 Azimuth - Kmin_azimuth 42 Azimuth - PlungeAz 43 Azimuth - vfast_azimuth 44 Young's Modulus 45 Fault Probability 46 Amplitude - ANISO PSTM MIN95DEG 47 Amplitude - ANISO PSTM MIN95DEG) 48 Amplitude -ANISO PSTM MIN95DEG 1 SOM5x5 49 Elastic Impedance 50 Lambda Rho 51 Incoherence Probability 52 VelocityP(Interval) 53 Lambda 54 Dimensionless - Kshape 55 Dimensionless - planarity 56 Dimensionless - linearity 57 VelocityS(Interval)

Index Variable Name



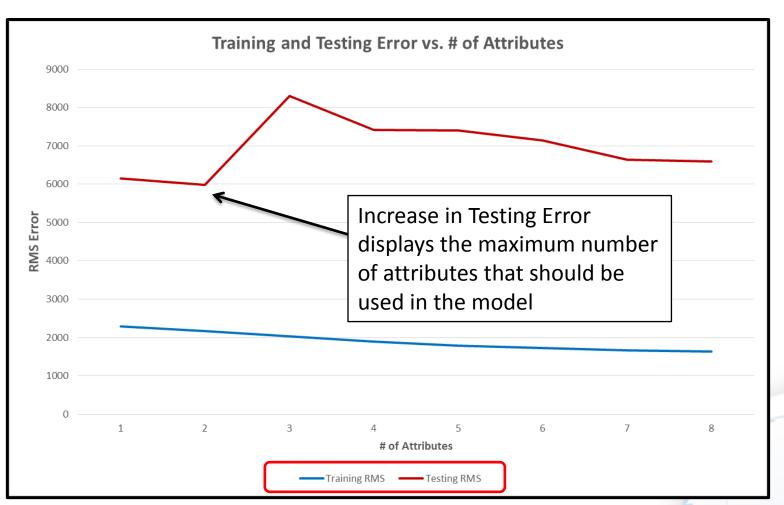
Model with <u>four</u> independent variables

Minimum Error = 6122.9

Correlation Coefficient (R) between the dependent and predicted Y variable = **0.891**

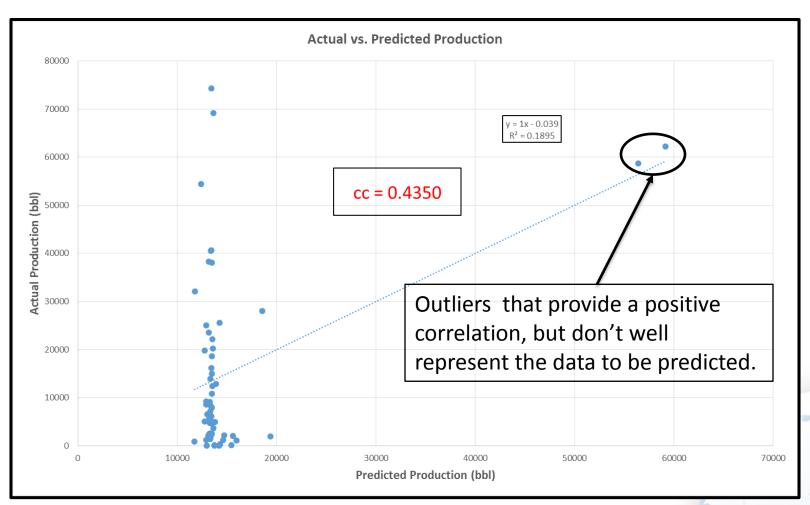
Example #2: Stepwise Regression #1

- 59 Vertical Wells
- Dependent Variable
 - Well Cum Oil 12-Month Cum Oil (bbl)
- Independent Variables (64 Attributes):


Acoustic Impedance Amplitude -ANISO PSTM MIN95DEG (Euc) Amplitude - ANISO PSTM MIN95DEG SOM5x5 (Euc) Angle – Down Angle (dega) Angle – East Angle (dega) Angle – North Angle (dega) Anisotropy - vfast_mag (Euc) Azimuth - dip_azimuth (dega) Azimuth - Kmax_azimuth (dega) Azimuth - Kmaxmag azimuth (dega) Azimuth - Kmin_azimuth (dega) Azimuth - vfast_azim (dega) Azimuth - Horizontal Angle (dega) Azimuth - Plunge Azimuth (dega) Azimuth - dip azimuth (dega) Bulk Modulus (psi) Relative Bulk Modulus (psi) Relative Density (g/cm3) Density (g/cm3) Dimensionless - Kshape (Euc) Dimensionless - planarity (Euc) Dip SOM5x5 (dega)

Fault Probability (Euc) Relative Shear Impedance (Pa.s/m3) Shear Impedance (Pa.s/m3) Incoherence Probability (Euc) Lambda (GPa) Relative Lambda (GPa) Lambda Rho (GPa.g/cm3) Relative Lambda Rho (GPa.g/cm3) Mu (GPa) Relative Mu (GPa) Mu Rho (GPa.g/cm3) Relative Mu Rho (GPa.g/cm3) Poisson's ratio (Euc) Relative Poisson's ratio (Euc) Relative Acoustic Impedance (g.ft/cm3.s) SpecD - SpecD 10(Hz) (Euc) SpecD - SpecD 14(Hz) (Euc) SpecD - SpecD 22(Hz) (Euc) SpecD - SpecD_26(Hz) (Euc) SpecD - SpecD 30(Hz) (Euc) SpecD - SpecD 34(Hz) (Euc)

SpecD - SpecD 38(Hz) (Euc) SpecD - SpecD 42(Hz) (Euc) SpecD - SpecD 46(Hz) (Euc) SpecD - SpecD 50(Hz) (Euc) SpecD - SpecD 54(Hz) (Euc) SpecD - SpecD_58(Hz) (Euc) SpecD - SpecD 62(Hz) (Euc) SpecD - SpecD_66(Hz) (Euc) Time Dip - dip (us/ft) Time-domain Curvature - Kdip (s/ft2) Time-domain Curvature - Kmax (s/ft2) Time-domain Curvature - Kmaxmag (s/ft2) Time-domain Curvature - Kmean (s/ft2) Time-domain Curvature - Kmin (s/ft2) Time-domain Curvature - Kneg (s/ft2) Time-domain Curvature - Kpos (s/ft2) Time-domain Curvature - Krms (s/ft2) Time-domain Curvature - Kstrike (s/ft2) Time-domain Curvature Squared - Kgauss (s2/ft4) Young's Modulus (GPa) Relative Young's Modulus (GPa)

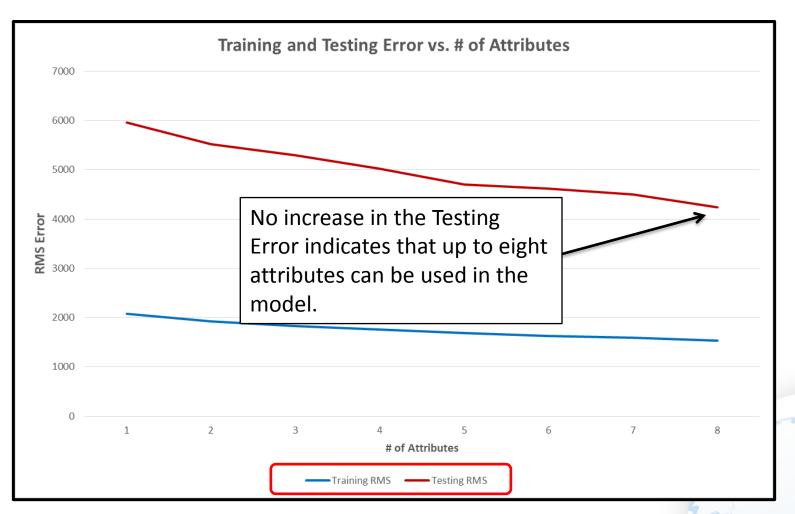

Example #2: Training and Testing RMS Error

Example #2: Actual vs. Predicted 12-Month Oil

Example #2: Stepwise Regression #2

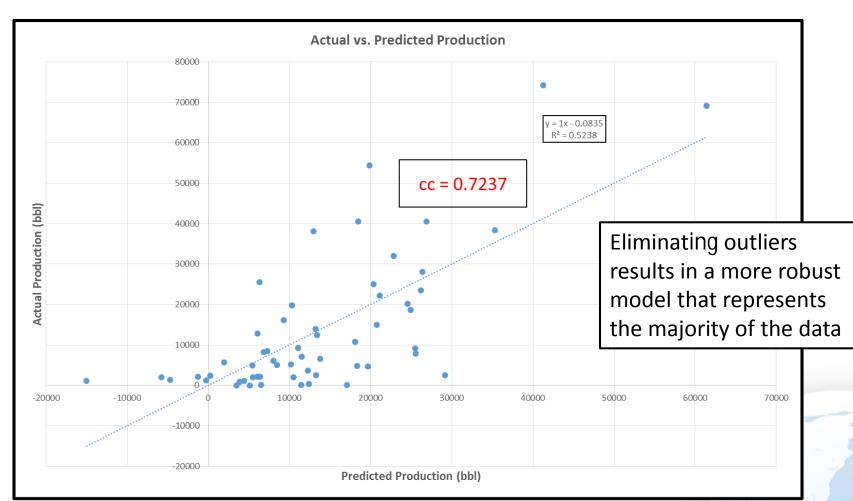
- 57 Vertical Wells
- Dependent Variable
 - Well Cum Oil 12-Month Cum Oil (bbl)

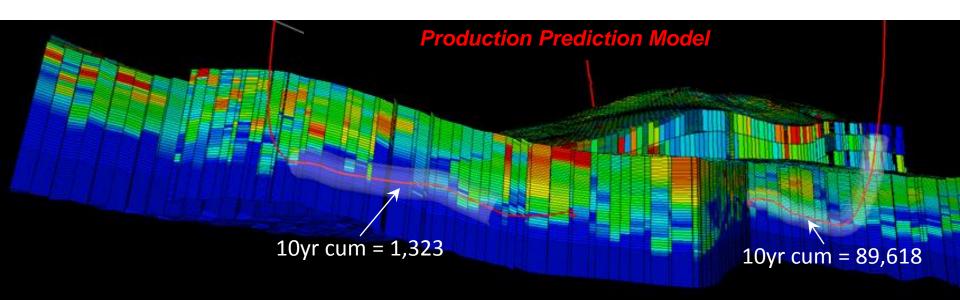
Independent Variables (64 Attributes):

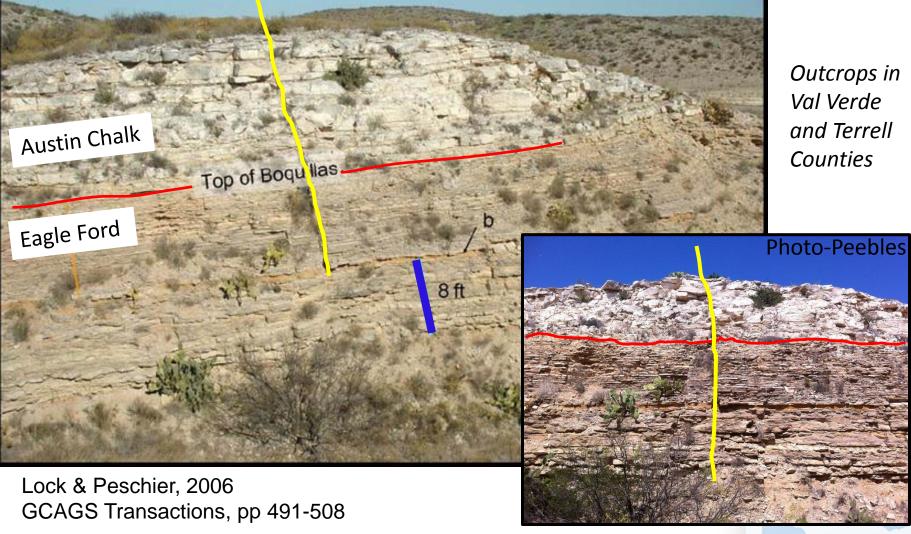

Acoustic Impedance Amplitude -ANISO PSTM MIN95DEG (Euc) Amplitude - ANISO PSTM MIN95DEG SOM5x5 (Euc) Angle – Down Angle (dega) Angle – East Angle (dega) Angle – North Angle (dega) Anisotropy - vfast_mag (Euc) Azimuth - dip_azimuth (dega) Azimuth - Kmax_azimuth (dega) Azimuth - Kmaxmag azimuth (dega) Azimuth - Kmin azimuth (dega) Azimuth - vfast azim (dega) Azimuth - Horizontal Angle (dega) Azimuth - Plunge Azimuth (dega) Azimuth - dip azimuth (dega) Bulk Modulus (psi) Relative Bulk Modulus (psi) Relative Density (g/cm3) Density (g/cm3) Dimensionless - Kshape (Euc) Dimensionless - planarity (Euc) Dip SOM5x5 (dega)

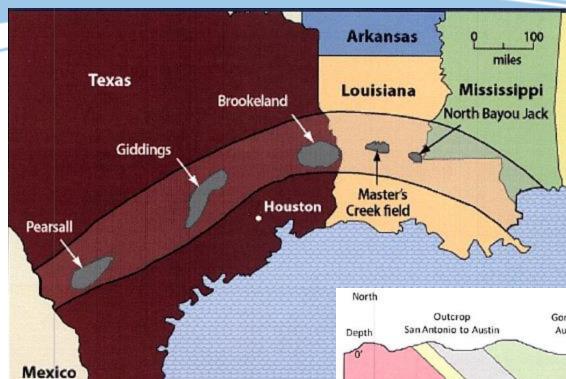
Fault Probability (Euc) Relative Shear Impedance (Pa.s/m3) Shear Impedance (Pa.s/m3) Incoherence Probability (Euc) Lambda (GPa) Relative Lambda (GPa) Lambda Rho (GPa.g/cm3) Relative Lambda Rho (GPa.g/cm3) Mu (GPa) Relative Mu (GPa) Mu Rho (GPa.g/cm3) Relative Mu Rho (GPa.g/cm3) Poisson's ratio (Euc) Relative Poisson's ratio (Euc) Relative Acoustic Impedance (g.ft/cm3.s) SpecD - SpecD 10(Hz) (Euc) SpecD - SpecD 14(Hz) (Euc) SpecD - SpecD 22(Hz) (Euc) SpecD - SpecD 26(Hz) (Euc) SpecD - SpecD 30(Hz) (Euc) SpecD - SpecD 34(Hz) (Euc)

SpecD - SpecD_38(Hz) (Euc) SpecD - SpecD 42(Hz) (Euc) SpecD - SpecD 46(Hz) (Euc) SpecD - SpecD 50(Hz) (Euc) SpecD - SpecD 54(Hz) (Euc) SpecD - SpecD_58(Hz) (Euc) SpecD - SpecD 62(Hz) (Euc) SpecD - SpecD_66(Hz) (Euc) Time Dip - dip (us/ft) Time-domain Curvature - Kdip (s/ft2) Time-domain Curvature - Kmax (s/ft2) Time-domain Curvature - Kmaxmag (s/ft2) Time-domain Curvature - Kmean (s/ft2) Time-domain Curvature - Kmin (s/ft2) Time-domain Curvature - Kneg (s/ft2) Time-domain Curvature - Kpos (s/ft2) Time-domain Curvature - Krms (s/ft2) Time-domain Curvature - Kstrike (s/ft2) Time-domain Curvature Squared - Kgauss (s2/ft4) Young's Modulus (GPa) Relative Young's Modulus (GPa)

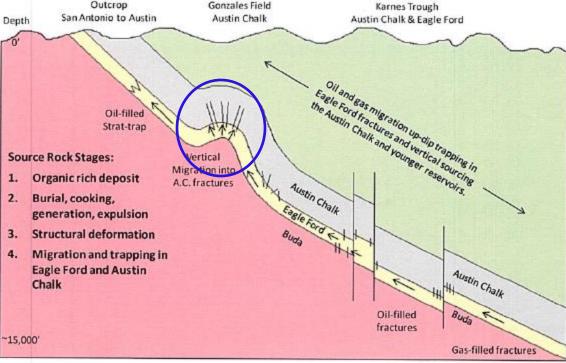

Example #2: Training and Testing RMS Error


Example #2: Actual vs. Predicted 12-Month Oil




Ross Peebles
Sean Boerner & Rohit Singh
Global Geophysical

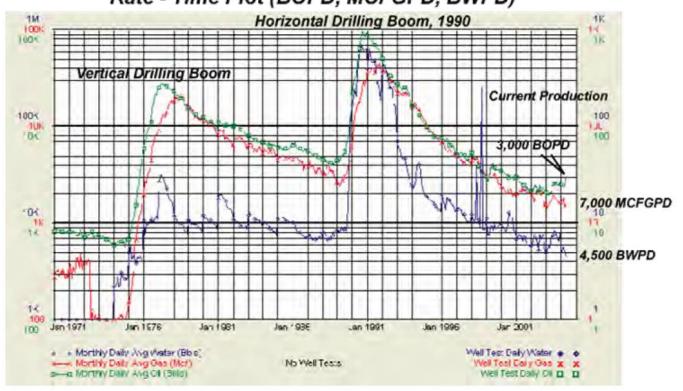
Austin Chalk - Eagle Ford Outcrop



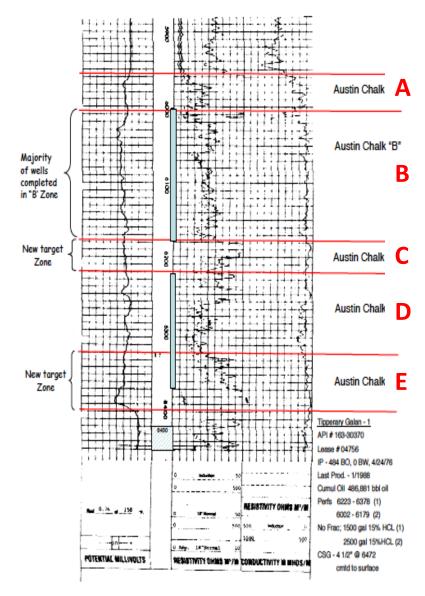
South

Austin Chalk traditional production

SPE 152402 - 2012

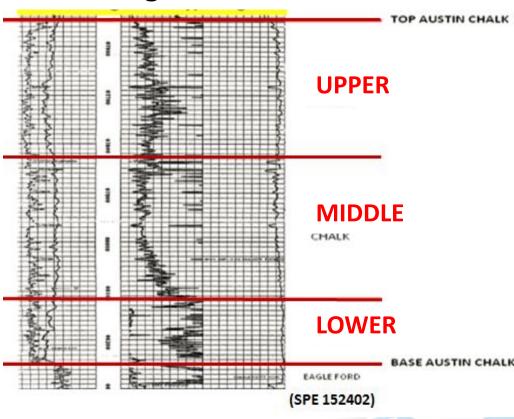

Peebles et al Global Geophysical Services May 2013

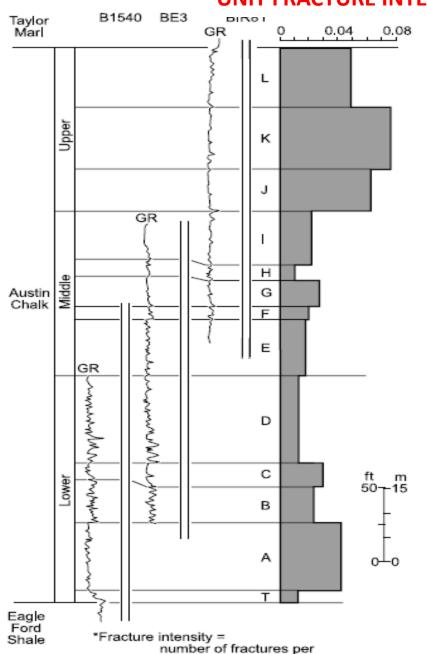
SPE 145117 – 2011; see also Berg & Gangi – 1999, AAPG v83 n5


The Production History of Pearsall Field Since 1970 Rate - Time Plot (BOPD, MCFGPD, BWPD)

© 2004 Energy Frontiers Partners, LP

Pearsall Field Frio County TX


Tipperary #1 Enrique Galan


Austin Chalk Stratigraphy

Giddings Field

UNIT FRACTURE INTENSITY

unit/feet of core unit

Austin Chalk Fracture Stratigraphy

Based on 110 shallow geotechnical cores - SSC

Laubach, Olson & Gross, 2009 AAPG Bulletin, v93, no 11

AVERAGE FRACTURE INTENSITY BY STRATIGRAPHIC MEMBER

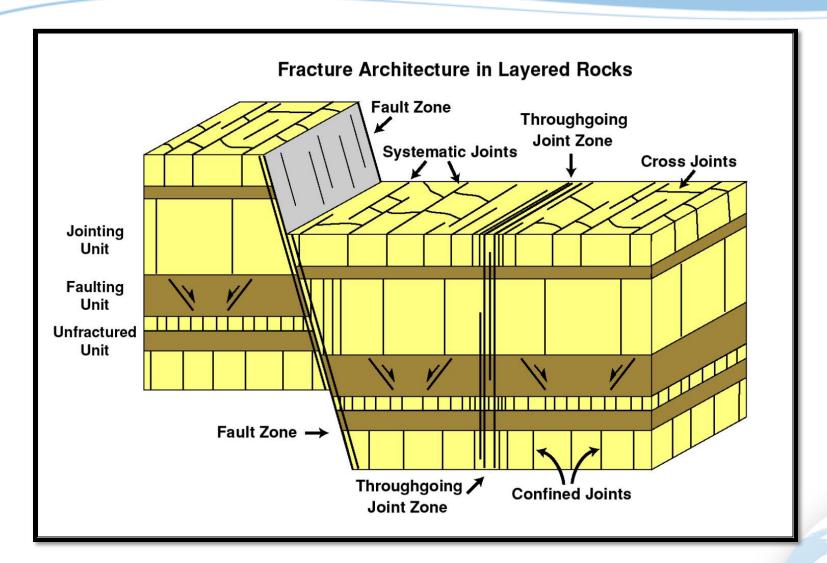
BIG HOUSE CHALK BURDITT MARL DESSAU CHALK ATCO CHALK 4.0 2.0 6.0 Fractures per Meter

MECHANICAL STRATIGRAPHY

UPPER MASSIVE BRITTLE CHALK

MIDDLE DUCTILE CHALK-MARL

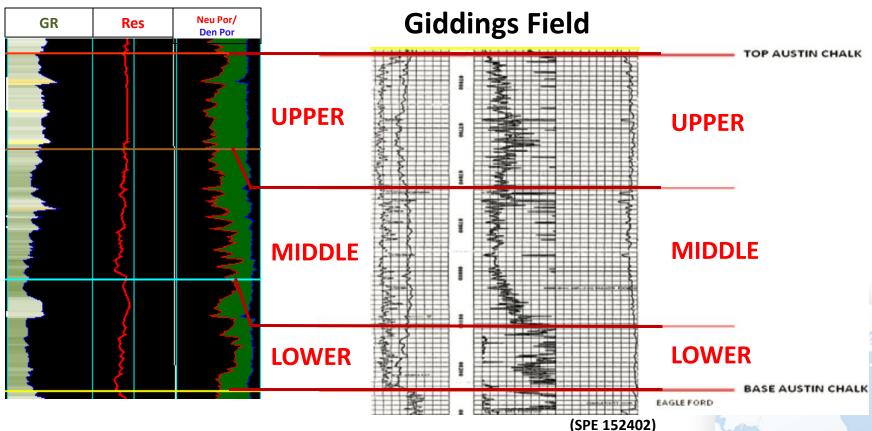
LOWER MASSIVE BRITTLE CHALK



Austin Chalk Fracture & Mechanical Stratigraphy

Based on outcrop and core studies

Corbett, Friedman & Spang, 1987 AAPG Bulletin, v71, no 1


Gross, 2013, HGS Mudrocks Conference

Well Log Correlation – 3 Unit Zonation

5 wells with triple combo log suites

Current Study

Production and Completion Data

114 vertical wells reported producing from the Austin Chalk

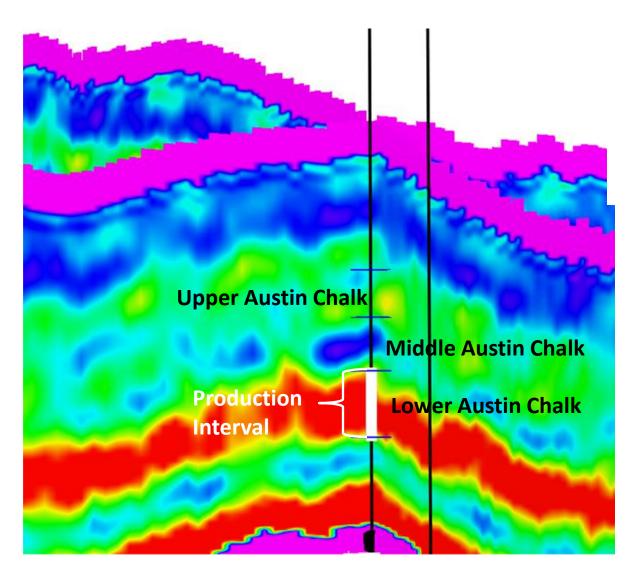
- Gathered production intervals and QCed in TX RRC
- Eliminated wells with production intervals outside Austin Chalk
- 51 wells remained for analysis

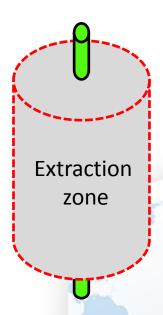
Selected only wells with single completion intervals

- 27 wells in final analysis.

10 year cumulative oil production was chosen as the production metric.

NOTE: 16 Horizontal Wells in Study Area


Seismic Attributes – 58 in this case


						Geophysical Service
(1)	Amplitude		(23) Spectral Decomposition 10Hz			
(2)	Sweetness	Amplitude	(24) Spectral Decomposition 12Hz			Inversion
(3)	HTI Interval Velocities	-	(25) Spectral Decomposition 14Hz			IIIVCISIOII
(4)	Depth	~&	(26) Spectral Decomposition 16Hz		(46)	Acoustic Impedance
(5)	Envelope	Velocity	(27) Spectral Decomposition 18Hz		(47)	Shear Impedance
(6)	Phase		(28) Spectral Decomposition 20Hz	Frequency Attributes Anisotropy &	(48)	Frac Factor™
(7)	Incoherence	Structural Attributes	(29) Spectral Decomposition 24Hz		(49)	Bulk Modulus
(8)	Incoherence Fault Scan		(30) Spectral Decomposition 28Hz			
(9)	Kshape		(31) Spectral Decomposition 32Hz		(50)	Density
			(32) Spectral Decomposition 36Hz		(51)	Poisson's ratio
(10)	Kmaxmag Azimuth		(33) Spectral Decomposition 40Hz(34) Spectral Decomposition 45Hz		(52)	P-Wave Velocity
(11)	•		(35) Spectral Decomposition 50Hz		(53)	Shear Modulus
(12)	•		(36) Spectral Decomposition 55Hz		(54)	S-Wave Velocity
	Kmax Curvature		(37) Spectral Decomposition 60Hz		(55)	Young's Modulus
(14)	•		(38) Dominant Frequency		(56)	Lambda Rho
(15)	Kmean Curvature		(39) Instantaneous Q			
(16)	Kmin Curvature		(40) Average Frequency		(57)	Mu Rho
(17)	Kneg Curvature		(41) HTI Magnitude		(58)	Brittleness
(18)	Kpos Curvature		(42) HTI Azimuth			
(19)	Krms Curvature		(43) VTI ETA Field			
(20)	Kgauss Curvature		(44) Closure Stress Gradient	Other		
(21)	Planarity		(45) Thin Bed Indicator	Attributes		
(22)	Linearity		_	Attributes		12 12 11

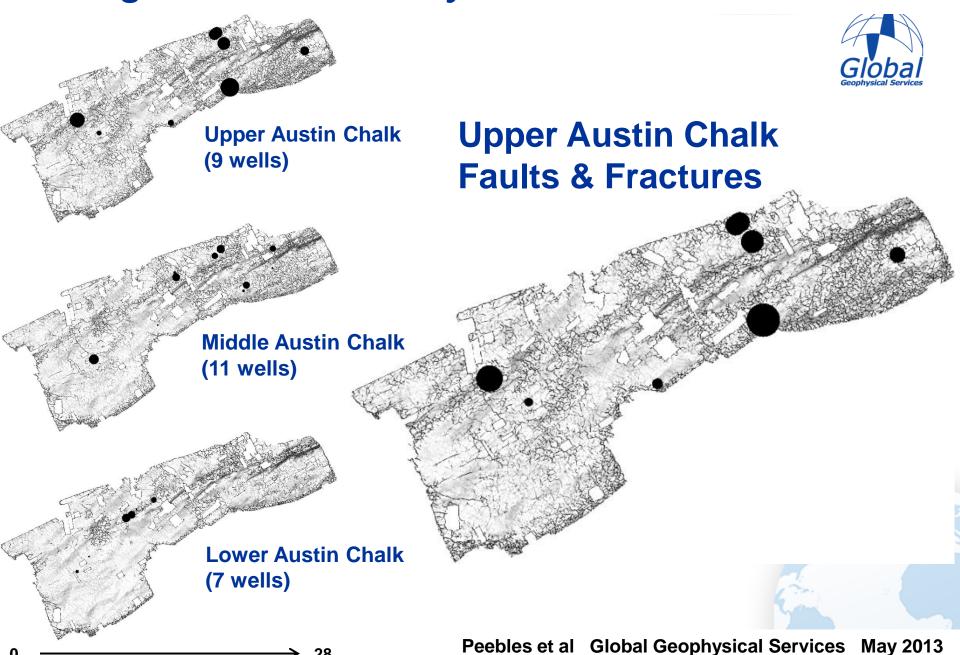
Austin Chalk Seismic-Production Analytics

58 seismic attributes were extracted around the production interval of each wellbore.

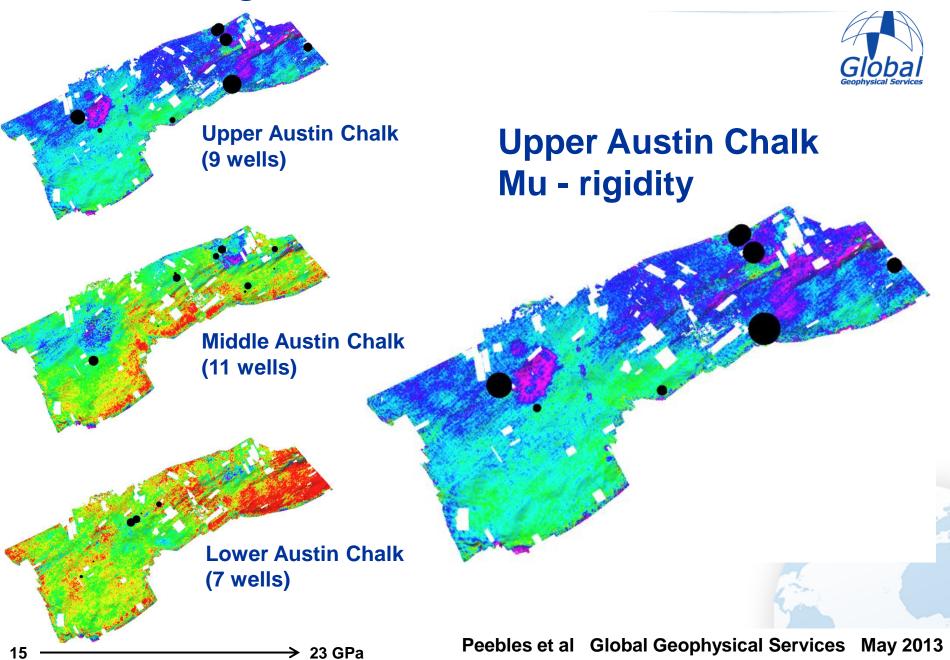
Well Performance Indicators First Pass – Bivariate Linear Correlations

Attribute	Correlation	Attribute	Correlation
Attribute	to Production	Attribute	to Production
Well - Cum Oil - 10 Year Cumulative	1.0	PI - Poisson's ratio - Poisson's ratio	0.083
PI - Acoustic Impedance - Acoustic Impedance	-0.713	PI - SpecD - SpecD - SpecD_10(Hz)	0.251
PI - Amplitude - Amplitude - ANISO_PSTM_MIN95DEG	0.194	PI - SpecD - SpecD - SpecD_14(Hz)	-0.236
PI - Amplitude - Amplitude - ANISO_PSTM_MIN95DEG_1_SOM5x	5 0.201	PI - SpecD - SpecD - SpecD_18(Hz)	-0.152
PI - Amplitude - Amplitude - ANISO_PSTM_MIN95DEG)	0.194	PI - SpecD - SpecD_22(Hz)	-0.478
PI - Angle - Angle - DownAngle	0.179	PI - SpecD - SpecD_26(Hz)	-0.559
PI - Angle - Angle - EastAngle	-0.079	PI - SpecD - SpecD - SpecD_30(Hz)	-0.567
PI - Angle - Angle - NorthAngle	0.411	PI - SpecD - SpecD - SpecD_34(Hz)	-0.417
PI - Azimuth - Azimuth - dip_azimuth	0.205	PI - SpecD - SpecD - SpecD_38(Hz)	-0.155
PI - Azimuth - Azimuth - HorzAng	0.566	PI - SpecD - SpecD - SpecD_42(Hz)	-0.002
PI - Azimuth - Azimuth - Kmax_azimuth	-0.023	PI - SpecD - SpecD_46(Hz)	0.066
PI - Azimuth - Azimuth - Kmaxmag_azimuth	0.221	PI - SpecD - SpecD_50(Hz)	0.086
PI - Azimuth - Azimuth - Kmin_azimuth	0.058	PI - SpecD - SpecD_54(Hz)	0.079
PI - Azimuth - Azimuth - PlungeAz	0.388	PI - SpecD - SpecD - SpecD_58(Hz)	0.051
PI - Azimuth - Azimuth - vfast_azimuth	-0.077	PI - SpecD - SpecD_62(Hz)	0.017
PI - Bulk Modulus - Bulk Modulus	-0.708	PI - SpecD - SpecD_66(Hz)	-0.012
PI - Density - Density	-0.7	PI - Time Dip - Time Dip -dip	-0.141
PI - Dimensionless - Dimensionless - Kshape	0.059	PI - Time-domain Curvature - Time-domain Curvature - Kdip	0.211
PI - Dimensionless - Dimensionless - linearity	0.126	PI - Time-domain Curvature - Time-domain Curvature - Kmax	0.103
PI - Dimensionless - Dimensionless - planarity	-0.151	PI - Time-domain Curvature - Time-domain Curvature - Kmaxn	nag 0.188
PI - Dip - Dip	-0.079	PI - Time-domain Curvature - Time-domain Curvature - Kmean	0.154
PI - Elastic Impedance - Elastic Impedance	-0.673	PI - Time-domain Curvature - Time-domain Curvature - Kmin	-0.195
PI - Fault Probability - Fault Probability	0.56	PI - Time-domain Curvature - Time-domain Curvature - Kneg	-0.136
PI - FracFactor - FracFactor	-0.069	PI - Time-domain Curvature - Time-domain Curvature - Kpos	0.145
PI - Incoherence Probability - Incoherence Probability	0.297	PI - Time-domain Curvature - Time-domain Curvature - Krms	0.167
PI - Lambda - Lambda	-0.687	PI - VelocityP(Interval) - VelocityP(Interval)	-0.714
PI - Lambda Rho - Lambda Rho	-0.672	PI - VelocityS(Interval) - VelocityS(Interval)	-0.668
PI - Mu - Mu	-0.735	PI - Vp/Vs - Vp/Vs	0.077
PI - Mu Rho - Mu Rho	-0.665	PI - Young's Modulus - Young's Modulus	-0.677

Primary Performance Indicators for 10 Year Cumulative Oil Production

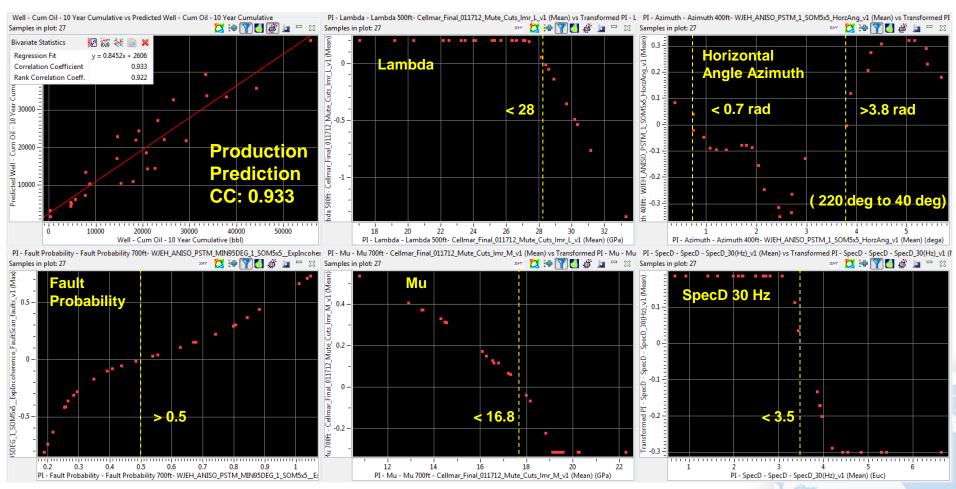


5 primary performance indicators:

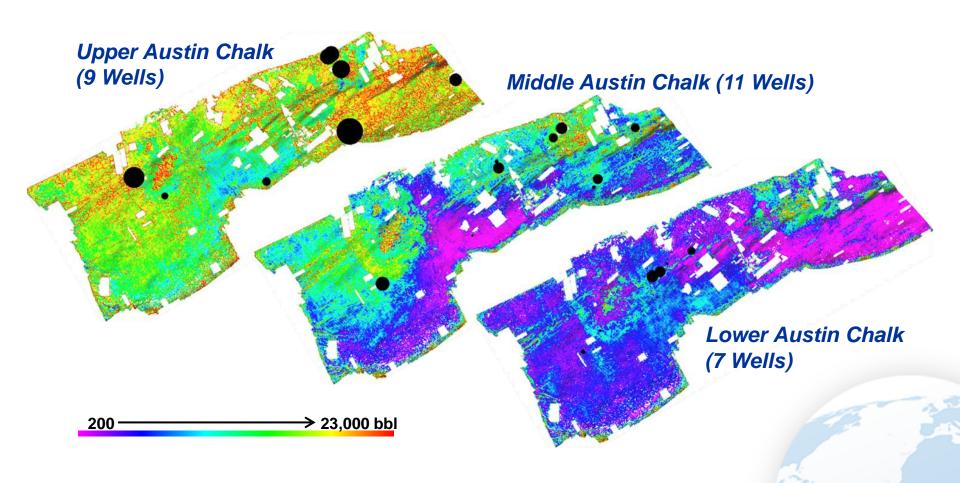

	A •1 .	<u>Correlation</u> o Production	Indicator of
_	Mu:	CC -0.735	Rigidity
_	Lambda:	CC -0.687	Incompressibility
_	Spec D 30 Hz:	CC -0.567	Related to reservoir thickness
_	Fault Probability:	CC 0.560	Faults and Fractures
_	Horizontal Angle:	CC 0.566	Bedding dip orientation

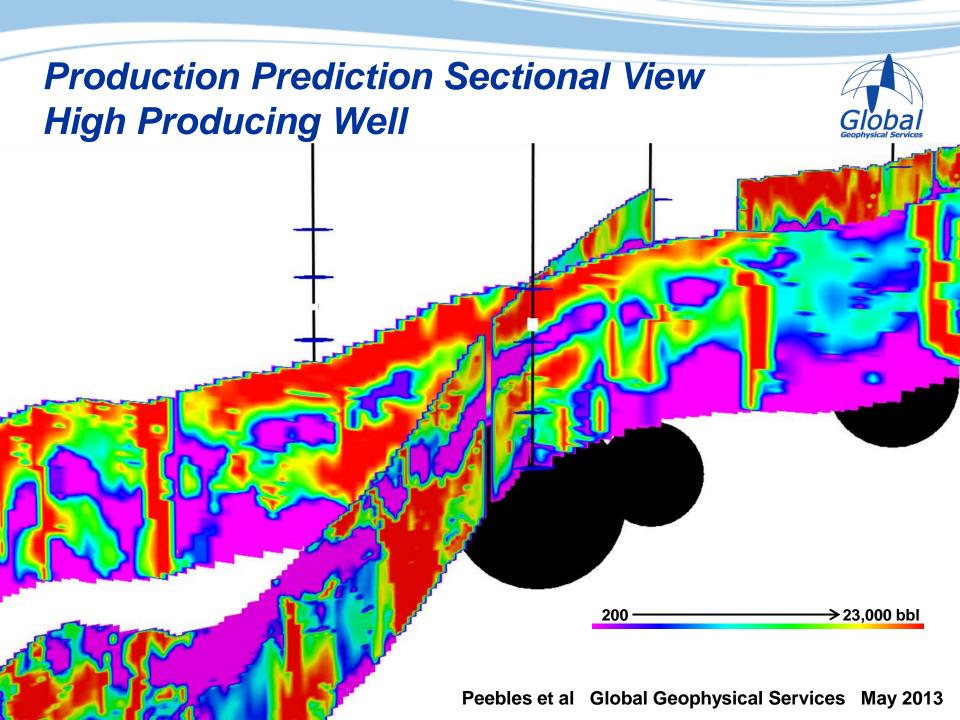
 Attributes with high correlations with each other (i.e., Mu and Mu-rho) are considered redundant and are not used in the analysis.

Average Fault Probability over 3 Austin Chalk Zones

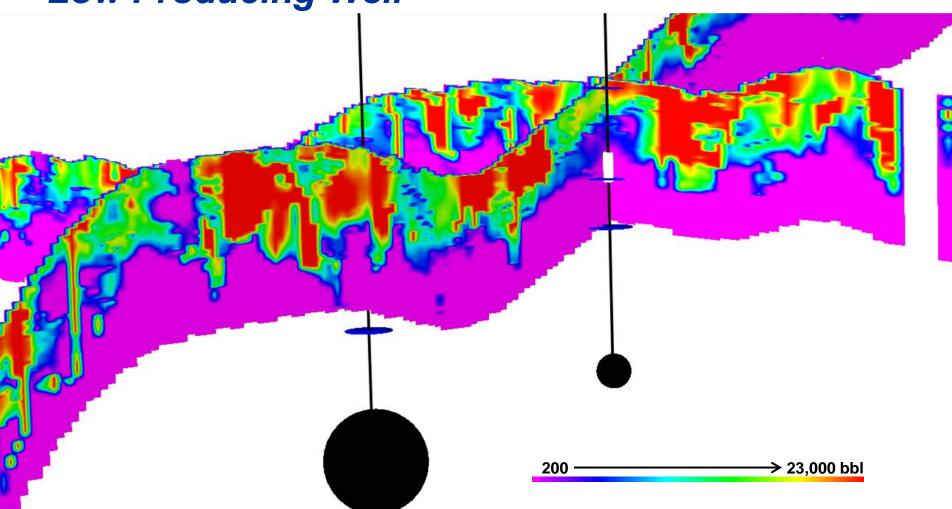

Average Mu Over 3 Austin Chalk Zones

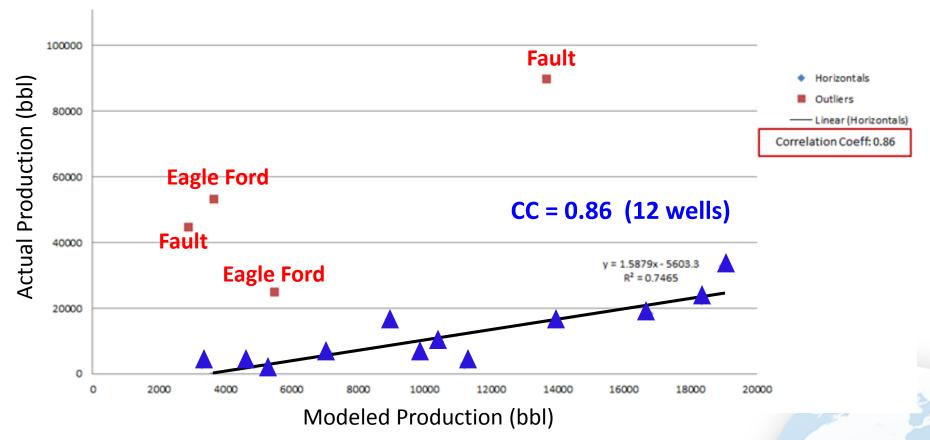
Multivariate Statistics Non-linear Regression




The key attributes are combined into a multivariate non-linear regression to create a seismic-production prediction transform

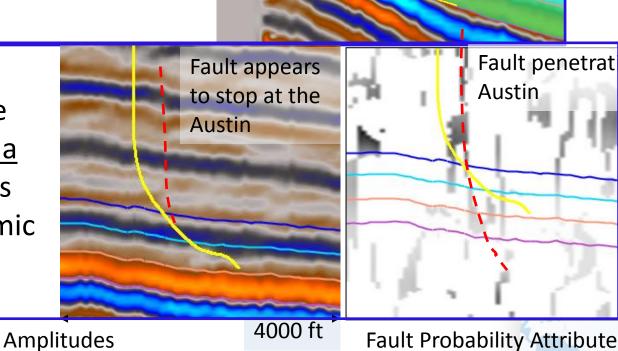
Average 10 Year Cum Production Prediction




Production Prediction Sectional View Low Producing Well

Correlation of 16 Horizontal Wells with Production Model (Blind Test)

Outlier Analysis

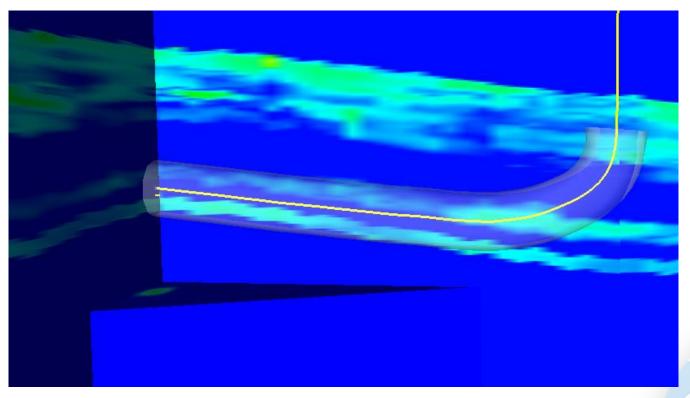


Fault penetrat ng

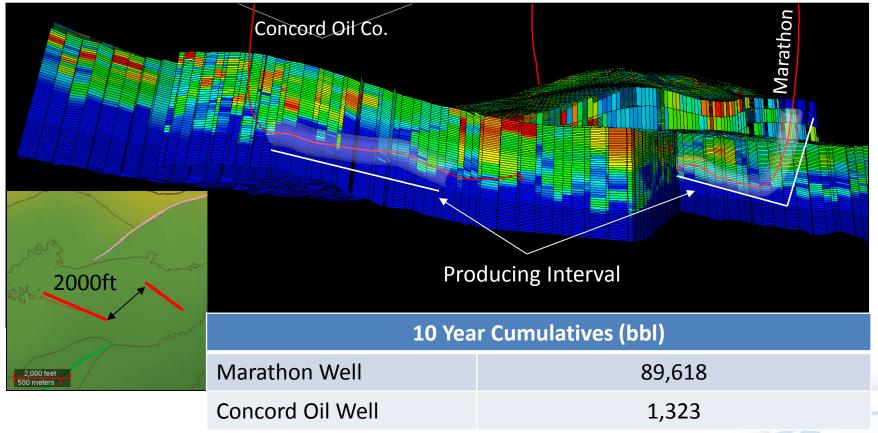
Austin

42-493-32239 – Well appears to have been completed in the Upper Eagle Ford.

42-493-30173 -Appears that the well penetrated a small fault that is almost sub-seismic in scale.



Prediction: Blind Horizontal Well


Actual Production: 2856 bbl

Predicted Production: 3287 bbl

Production Prediction Model and Two Horizontal Wells

- 80 90 % of Concord's producing interval outside any area of significant production.
- Marathon almost fully in high-producing regions, although could have been even better if they had landed shallower.

Discussion

- Modeling of productivity bypasses prediction of porosity, water saturation, and other variables that are more directly related to reservoir productivity
- Well Productivity and Prospectivity Analysis (WPPA) Workflow
 - There is a heavy reliance on statistics
 - Need to ensure that you have enough data to have robust correlations and models
 - Stationarity Assumption
 - Just because you get a good correlation coefficient doesn't mean that you have a good model!
 - Outliers
 - Over-fitting of the data
 - Too many variables in the model
 - Be sparse with the number of variables versus the number of independent observations

Discussion

- Well Productivity and Prospectivity Analysis Workflow (cont.)
 - Extracting attributes and building models using multiple observations along the wellbore (3D attribute and production values) produces consistently more reproducible models than averaging the attributes for each well (2D attribute and production values).
- Accurate velocity models for depth conversion are critical to correlate seismic attributes to production intervals at the right depth
- Studies we have done show the importance not only of having the right (X, Y) location for a well, but the correct layer and stratigraphic depth
 - There are variations in productivity in 3D
 - Not all stages along the reservoir path will be productive
 - Have a tool to predict productivity
 - Weigh the cost of fracing the stage versus the revenue from the expected production
 - Design the completion to optimize the profitability of the well

Thank you

Sean.Boerner@globalgeophysical.com ross.peebles@globalgeophysical.com