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Abstract 

 
The magnitude of in situ stresses is important toward understanding fault and earthquake mechanics, as well as for hydrocarbon exploration. 
Wellbore failures, including compressional borehole breakouts (BO) can provide information about stress orientation and can be used to 
constrain in situ stress magnitude if the rock or sediment unconfined compressive strength (UCS) is known. Values of UCS used to estimate 
stresses from BO are typically determined from laboratory-derived empirical relations between P-wave velocity (Vp) and UCS. For many 
applications in sedimentary basins and tectonically active settings, UCS is estimated from relations developed for lithified shales. We seek to 
advance our understanding of Vp as a proxy for UCS, particularly in high-porosity (~30-60%), shallowly buried (<2 km) sediments where 
estimates of UCS based on relationships defined for fully lithified shales may lead to overestimates of strength. We focus on the Nankai 
accretionary prism offshore SW Japan, formed by subduction of the Philippine Sea Plate beneath the Pacific Plate. Breakouts have been 
identified from azimuthal resistivity logs at IODP Site 808, which penetrated the accretionary prism and plate boundary décollement ~3 km 
landward of the trench. We determine UCS from triaxial tests on core samples recovered during Ocean Drilling Program Leg 190 from ODP 
Site 1174, located ~1 km away from Site 808. We then compare UCS measurements to Vp data from wireline logging.  
 
Our results indicate that directly measured values of UCS are considerably lower (>1 MPa) than those estimated from Vp using the existing 
relationships for shales. When applied to estimate in situ stresses from the observed wellbore failures, values of UCS determined from these 
relationships likely lead to significant overestimates of stress magnitude. Our results should apply to the general case of shallow, relatively 
high-porosity sediments, and therefore carry implications for borehole stability and assessment of shallow geohazards globally.  
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1. Abstract
 The magnitude of in situ stresses is important toward understanding fault and earthquake 
mechanics, as well as for hydrocarbon exploration.  Wellbore failures, including compressional 
borehole breakouts (BO) can provide information about stress orientation, and can be used to 
constrain in situ stress magnitude if the rock or sediment unconfined compressive strength 
(UCS) is known. Values of UCS used to estimate stresses from BO are typically derived from 
laboratory-derived empirical relations between P-wave velocity (Vp) and UCS. For many 
applications in sedimentary basins and tectonically active settings, UCS is estimated from 
relations developed for lithified shales. 
 We seek to advance our understanding of Vp as a proxy for unconfined compressive strength 
(UCS), particularly in high-porosity (~30-60%), shallowly buried (<2 km) sediments where 
estimates of UCS based on relationships defined for fully lithified shales may lead to 
overestimates of strength.  We focus on the Nankai accretionary prism offshore SW Japan, 
formed by subduction of the Philippine Sea Plate beneath the Pacific Plate. Breakouts have been 
identified from azimuthal resistivity logs at IODP Site 808, which penetrated the accretionary 
prism and plate boundary décollement ~3 km landward of the trench. We determine UCS from 
triaxial tests on core samples recovered during Ocean Drilling Program Leg 190 from ODP Site 
1174, located ~1 km away from Site 808. We then compare UCS measurements to Vp data from 
wireline logging. 
 Our results indicate that directly measured values of UCS are considerably lower (>1 MPa) than 
those estimated from Vp using the existing relationships for shales. When applied to estimate in 
situ stresses from the observed wellbore failures, values of UCS determined from these 
relationships likely lead to significant overestimates of stress magnitude.  Our results should 
apply to the general case of shallow, relatively high-porosity sediments, and therefore carry 
implications for borehole stability and assessment of shallow geohazards globally. 

2.Geologic Setting
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Site 1174 and Site 808 are located along the 
Muroto Transect in the Nankai Trough, offshore 
SW Japan. Site 1174 and Site 808 are within 2 
km of each other and are thus very similar 
stratigraphically. Structurally, Site 808 is in the 
frontal thrust, whereas 1174 is in the 
protothrust. Site 808 has a repeat section where 
it crosses the frontal thrust.

3. Methods
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A) Lab: Measurements of UCS and μ in 
Triaxial Apparatus

B)Theory: Stress from BO width

Borehole Stress Relative to Breakouts
Schematic of Triaxial Apparatus

4. Results and Conclusions
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-Trim ODP sediment core from depth of     
   interest to three cylindrical samples of 25      
   mm diameter by 50 mm length.
-Perform a consolidated-drained triaxial test      
   on each of the three samples at three   
   different effective confining stresses of 1.5,  
   2.5, and 3.5 MPa.
-Use failure criterion from triaxial tests to   
  define UCS and μ.

-Create stress polygon based on Coulomb     
   theory of frictional sliding on critically         
 oriented faults.  
-Measure BO from LWD-RAB data.
-Assume rock strength is equal to stress at   
  edge of breakout.
-Solve for far field stresses consistent with    
  observed breakout width, using modified   
  Wiebols-Cook failure criterion with stress at  
  the borehole wall.
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-Results from all 
experiments plot 
below shale-derived 
equations.
-This lowers stress 
estimate magnitudes
as illustrated in a 
specific case below 
at 235 mbsf at Site 
808, in the vicinity of 
the upper trench 
wedge sample used 
in UCS tests.
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Samples from the inner wedge with higher Vp will 
be focus of future experiments.
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