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Abstract

Sedpak, a sedimentary computer simulation developed at the University of South Carolina, assumes clastic transport based on slopes and
carbonate production based on water depth. Output geometries display a sequence stratigraphic framework of erosional and depositional
surfaces of the simulated section. Sedpak extends interpretation of depositional setting and predictions of lithofacies geometries away from the
studied areas. It aids prediction of facies likely to contain both hydrocarbon and water resources and their characteristic fabrics. Redesign of
Sedpak incorporates open source software applications and tools. New design continues to provide a platform for understanding how different
geometries are produced by varying sea level, sedimentation, and subsidence.

Computer modeling of sedimentary geometries that match interpreted sections is a repetitive exercise in parameter estimation, viewing of
resulting geometries and adjusting of parameters to converge on a best match. Intuitive model parameters based on physical processes,
including rates of clastic sediment accumulation and transport distance down slope in a two dimensional simulation space, offer valuable
insight into a more quantitative modeling approach. Further information on the fabrics of the deposits can be obtained by means of coupling
computer models of sedimentary geometries with physically based submodels that describe the spatial and temporal evolution of relatively
small portions of the entire system. The origins of sediment geometries and facies are interpreted by comparison with observations of similar
features in modern sedimentary systems and their processes and then the interpretations are tested with the Sedpak simulation. The question is:
do input parameters match those inferred from current field observations parameters set to create basic sequences stratigraphic systems tracts,
including prograding low-stand and high stand systems tracts, and retrogradational transgressive systems tracts? The same applies to in-situ
carbonate accumulation. Are the depth-production rates reasonable?

Sedpak provides a work setting to tune initial conditions and model parameters producing 2-D sedimentary geometries that intuitively 'make
sense' to new and experienced stratigraphic modelers. A new open source design will eliminate collaboration barriers and offer easier access to
model data and depositional algorithms.
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reasonable?

algorithms.

Sedpak, a sedimentary computer simulation developed at the University of South
Carolina, assumes clastic transport based on slopes and carbonate production
based on water depth. Output geometries display a sequence stratigraphic
framework of erosional and depositional surfaces of the simulated section. Sedpak
extends Interpretation of depositional setting and predictions of lithofacies
geometries away from the studied areas. It aids prediction of facies likely to contain
both hydrocarbon and water resources and their characteristic fabrics.

Redesign of Sedpak incorporates open source software applications and tools. New
design continues to provide a platform for understanding how different geometries
are produced by varying sea-level, sedimentation, and subsidence.

Computer modeling of sedimentary geometries that match interpreted sections Is a
repetitive exercise in parameter estimation, viewing of resulting geometries and
adjusting of parameters to converge on a best match. Intuitive model parameters
based on physical processes, including rates of clastic sediment accumulation and
transport distance down slope in a two dimensional simulation space, offer valuable
Insight into a more quantitative modeling approach. Further information on the
fabrics of the deposits can be obtained by means of coupling computer models of
sedimentary geometries with physically based submodels that describe the spatial
and temporal evolution of relatively small portions of the entire system. The origins
of sediment geometries and facies are interpreted by comparison with observations
of similar features In modern sedimentary systems and their processes and then the
Interpretations are tested with the SEDPAK simulation. The question is: do input
parameters match those inferred from current field observations parameters set to
create basic sequences stratigraphic systems tracts, including prograding low-stand
and high stand systems tracts, and retrogradational transgressive systems tracts?
The same applies to in-situ carbonate accumulation. Are the depth-production rates

Sedpak provides a work setting to tune initial conditions and model parameters
producing 2D sedimentary geometries that intuitively ‘'make sense' to new and
experienced stratigraphic modelers. A new open source design will eliminate
collaboration barriers and offer easier access to model data and depositional




SEDPAK

What Is SEDPAK?

SEDPAK provides a conceptual framework for modeling sedimentary fill of basins by visualizing
stratal geometries as they are produced between seqguence boundaries. The simulation Is used to
substantiate inferences drawn from the potential for hydrocarbon entrapment and accumulation within
a basin. It is designed to model and reconstruct clastic and carbonate sediment geometries which
are produced as a response to changing rates of tectonic movement, eustacy, and sedimentation.
The simulation enables the evolution of the sedimentary fill of a basin to be tracked, defines a
chronostratigraphic framework for the deposition of these sediments and illustrates the relationship
between sequences and systems tracts seen In cores, outcrop, and well and seismic data.

What assumptions are made in the simulation algorithms?

» Sea level position, tectonic movement and sedimentation all vary independently.

» Tectonic movement iIs vertical only but SEDPAK accounts for combined effects of crustal cooling
and Isostatic response to sediment loading.

» Subsidence due to compaction Is handled separately from tectonic subsidence.

» Clastics are deposited first followed by carbonate deposition.

» Clastic sediments first fill the accomodation of the shelf landward of the bayline break as alluvium
and shallow marine sediments. Sediment Is then deposited In the submarine environment
downslope from the bayline break to a prescribed distance on the underlying surfaces that are
Inclined below a specific angle.

» Sediment Is deposited as lithologic ratios.

» Simultaneous with deposition, sediment Is returned to sediment supply after erosion.

* Benthic carbonates accumulate as a function of water depth and time.

* For all time and location data, SEDPAK linearly interpolates values between given input values and
extrapolates from intermediate values If start or end values are not defined.

What are major controls of sedimentary fill iIn SEDPAK’s simulation
algorithms?

« Subsidence

* The thermal and mechanical properties of the lithosphere exert important controls on the
formation of sedimentary basins (Steckler, 1990).

* Thermal subsidence rates and the magnitude and distribution of subsidence due to loading vary
IN basins of different tectonic settings (Steckler and Watts, 1978; Stephenson, 1990).

* Eustasy (global sea level)

» Eustasy refers to the sea level relative to a fixed datum, such as the center of the earth. Global
sea level variations results form changes in either oceanic basin volume or water volume.
Eustasy combined with subsidence results in relative sea level variations, which control
accomodation for sediment deposition (Posamentier et al., 1988; Posamentier and Vail, 1988).

 Sediment Supply

* The role of sediment supply in transgressions and regressions is a fundamental one...
(Schlager, 1994). When the rate of sediment supply Is greater than the rate of relative sea level
rise, accomodation space will be filled.
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In shallow water at column 1, the basin is filled to sealevel then
sediment is deposited into the alluvial plane at the angle of alluvial
deposition. As accomodation increases seaward, deposition increases
until maximum sediment is deposited in column 6. Given an initial
supply that was shale prone, sand is depleted in column 8 then the
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Submarine Deposition .. : : :
1-10 g remaining shale is deposited in columns 9 and 10.

(Magnified)

6
Shale Sand

8 Shale deposition only after 8. Sand depleted after 8.
9
10 Sand/Shale ratio deposited at each column.
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Deposit up to sealevel and fill onto alluvial plane. If
sediment is available and the depositional angle 6 is
not exceeded, fill accomodation landward and
determine new bayline. If deposition if possible, all
accomodation is filled at the alluvial angle 8, and the
shoreline is shifted landward.
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wedge.
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SEDPAK System

Information and download:
sedpak.geol.sc.edu

Software Development History

First version was written in Mainframe Fortran
SEDFIL converted to Unix C language and renamed SEDPAK
Real-time plotting in X-Window System
(Industrial Consortium funding begins
Keyword-Value File format (.db) for input files
New depositional algorithms

Motif Editor and Execution user interface

WCL Widget and VOGLE vector graphics libraries
Ported to AlX, BSD, Solaris, IRIX

Includes examples and test files

Industrial Consortium funding ends)

Ported to Linux

Not open source yet, but free to download

| essons Learned

* Low-level user interface development can quickly consume all resources
* Avoid operating system and compiler dependencies

* Avoid different 32-bit and 64-bit operating system releases

» Use platform independent tools and libraries

New Python Integration

Added user functionality without major modifications to SEDPAK source code
Python language

Startup Menu

Integrated Help

Snapshot and movie files

Line vector over scanned image overlay

Proposed Sedpak-Next Generation (Plans)

Open Source IPython

Interpreted, not compiled, no 32-64 bit
Interactive

2-D space first

Tight control and inspection of each time step
Spreadsheet integration

Capable of web hosting

Platform independent

Ubuntu Linux Live CD, native or virtual machine
Avoid different 32-bit and 64-bit operating system dependencies
Use platform independent tools and libraries




