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Abstract 

 

Sedpak, a sedimentary computer simulation developed at the University of South Carolina, assumes clastic transport based on slopes and 

carbonate production based on water depth. Output geometries display a sequence stratigraphic framework of erosional and depositional 

surfaces of the simulated section. Sedpak extends interpretation of depositional setting and predictions of lithofacies geometries away from the 

studied areas. It aids prediction of facies likely to contain both hydrocarbon and water resources and their characteristic fabrics. Redesign of 

Sedpak incorporates open source software applications and tools. New design continues to provide a platform for understanding how different 

geometries are produced by varying sea level, sedimentation, and subsidence.  

 

Computer modeling of sedimentary geometries that match interpreted sections is a repetitive exercise in parameter estimation, viewing of 

resulting geometries and adjusting of parameters to converge on a best match. Intuitive model parameters based on physical processes, 

including rates of clastic sediment accumulation and transport distance down slope in a two dimensional simulation space, offer valuable 

insight into a more quantitative modeling approach. Further information on the fabrics of the deposits can be obtained by means of coupling 

computer models of sedimentary geometries with physically based submodels that describe the spatial and temporal evolution of relatively 

small portions of the entire system. The origins of sediment geometries and facies are interpreted by comparison with observations of similar 

features in modern sedimentary systems and their processes and then the interpretations are tested with the Sedpak simulation. The question is: 

do input parameters match those inferred from current field observations parameters set to create basic sequences stratigraphic systems tracts, 

including prograding low-stand and high stand systems tracts, and retrogradational transgressive systems tracts? The same applies to in-situ 

carbonate accumulation. Are the depth-production rates reasonable?  

 

Sedpak provides a work setting to tune initial conditions and model parameters producing 2-D sedimentary geometries that intuitively 'make 

sense' to new and experienced stratigraphic modelers. A new open source design will eliminate collaboration barriers and offer easier access to 

model data and depositional algorithms. 
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Sedpak, a sedimentary computer simulation developed at the University of South 

Carolina, assumes clastic transport based on slopes and carbonate production 

based on water depth. Output geometries display a sequence stratigraphic 

framework of erosional and depositional surfaces of the simulated section. Sedpak

extends interpretation of depositional setting and predictions of lithofacies

geometries away from the studied areas. It aids prediction of facies likely to contain 

both hydrocarbon and water resources and their characteristic fabrics.

Redesign of Sedpak incorporates open source software applications and tools. New 

design continues to provide a platform for understanding how different geometries 

are produced by varying sea-level, sedimentation, and subsidence.

Computer modeling of sedimentary geometries that match interpreted sections is a 

repetitive exercise in parameter estimation, viewing of resulting geometries and 

adjusting of parameters to converge on a best match. Intuitive model parameters 

based on physical processes, including rates of clastic sediment accumulation and 

transport distance down slope in a two dimensional simulation space, offer valuable 

insight into a more quantitative modeling approach. Further information on the 

fabrics of the deposits can be obtained by means of coupling computer models of 

sedimentary geometries with physically based submodels that describe the spatial 

and temporal evolution of relatively small portions of the entire system. The origins 

of sediment geometries and facies are interpreted by comparison with observations 

of similar features in modern sedimentary systems and their processes and then the 

interpretations are tested with the SEDPAK simulation. The question is: do input 

parameters match those inferred from current field observations parameters set to 

create basic sequences stratigraphic systems tracts, including prograding low-stand 

and high stand systems tracts, and retrogradational transgressive systems tracts? 

The same applies to in-situ carbonate accumulation. Are the depth-production rates 

reasonable?

Sedpak provides a work setting to tune initial conditions and model parameters 

producing 2D sedimentary geometries that intuitively 'make sense' to new and 

experienced stratigraphic modelers. A new open source design will eliminate 

collaboration barriers and offer easier access to model data and depositional 

algorithms. 

ABSTRACT



SEDPAK

What is SEDPAK?

SEDPAK provides a conceptual framework for modeling sedimentary fill of basins by visualizing 

stratal geometries as they are produced between sequence boundaries. The simulation is used to 

substantiate inferences drawn from the potential for hydrocarbon entrapment and accumulation within 

a basin.  It is designed to model and reconstruct clastic and carbonate sediment geometries which 

are produced as a response to changing rates of tectonic movement, eustacy, and sedimentation. 

The simulation enables the evolution of the sedimentary fill of a basin to be tracked, defines a 

chronostratigraphic framework for the deposition of these sediments and illustrates the relationship 

between sequences and systems tracts seen in cores, outcrop, and well and seismic data.

What assumptions are made in the simulation algorithms?

• Sea level position, tectonic movement and sedimentation all vary independently.

• Tectonic movement is vertical only but SEDPAK accounts for combined effects of crustal cooling 

and isostatic response to sediment loading.

• Subsidence due to compaction is handled separately from tectonic subsidence.

• Clastics are deposited first followed by carbonate deposition.

• Clastic sediments first fill the accomodation of the shelf landward of the bayline break as alluvium 

and shallow marine sediments. Sediment is then deposited in the submarine environment 

downslope from the bayline break to a prescribed distance on the underlying surfaces that are 

inclined below a specific angle.

• Sediment is deposited as lithologic ratios.

• Simultaneous with deposition, sediment is returned to sediment supply after erosion.

• Benthic carbonates accumulate as a function of water depth and time.

• For all time and location data, SEDPAK linearly interpolates values between given input values and 

extrapolates from intermediate values if start or end values are not defined.

What are major controls of sedimentary fill in SEDPAK’s simulation 

algorithms?

• Subsidence

• The thermal and mechanical properties of the lithosphere exert important controls on the 

formation of sedimentary basins (Steckler, 1990).

• Thermal subsidence rates and the magnitude and distribution of subsidence due to loading vary 

in basins of different tectonic settings (Steckler and Watts, 1978; Stephenson, 1990).

• Eustasy (global sea level)

• Eustasy refers to the sea level relative to a fixed datum, such as the center of the earth.  Global 

sea level variations results form changes in either oceanic basin volume or water volume. 

Eustasy combined with subsidence results in relative sea level variations, which control 

accomodation for sediment deposition (Posamentier et al., 1988; Posamentier and Vail, 1988).

• Sediment Supply

• The role of sediment supply in transgressions and regressions is a fundamental one… 

(Schlager, 1994). When the rate of sediment supply is greater than the rate of relative sea level 

rise, accomodation space will be filled.



SEDPAK Time Step Operations
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Clastic Deposition

Example of Sand/Shale Ratio Deposition from Sediment Triangles
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Neuquén Basin Case Study

Setup Parameters
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The Cretaceous Carbonate and Clastic Fill of the 

Neuquén Basin

Mitchum, and Uliana (1985) made a study of the Upper Jurassic-

Lower Cretaceous interval in the Neuquen basin, Argentina.  This 

provides a good example of carbonate sedimentary response to 

eustatic sea-level change in a rifted basin that has produced 

hydrocarbons for over 50 years.  We used Sedpak to analyze a 

well cross section taken from the area and which Mitchum, and 

Uliana (1985) had used in their integrated stratigraphic approach, 

including seismic stratigraphy for sequence  identification and 

configuration, wells and outcrops for lithologies and porosity 

types, and outcrops for paleontological age, ecological data, and 

detailed physical stratigraphy. The SEDPAK section and that of 

Mitchum, and Uliana (1985) shows the Vaca Muerta, Quintuco, 

Lorna Montosa, and Mulichinco formations are time-transgressive

lithofacies units within a series of prograding sequences that 

laterally filled the shallow, stable basin. There are at least nine 

clinoform-shaped depositional sequences, and they span the 

Tithonian, Berriasian, and Valanginian stages. All of them consist 

of seismically mappable shelf, shelf-margin. slope, and basin 

facies. In the wells tied to seismic data, the predominantly 

carbonate reservoir rocks of the Lorna Montosa and Quintuco

formations represent, respectively, the inner- and outer-shelf 

segments of individual cIinoform sequences. Hydrocarbon-source 

shales of the Vaca Muerta Formation occur in slope and basin 

positions. The youngest prograding unit is characterized by 

shelfal to continental sandstones of the Mulichinco Formation. 

The degree of shelfward restriction, lateral progradation, and 

vertical aggradation of the sequences appears to be strongly 

controlled by global trends of eustatic rises and falls. Other 

depositional controls, including thermal subsidence and sediment 

influx were modeled assuming slow, nearly constant rates in 

medial to late stages of basin evolution.

The Sedpak idealized shelf-to-basin lithologic model of a given 

sequence progresses from terrestrlal sandstones and shales 

through marine inner-shelf micritic limestones, dolomites, and 

shales; middle-shelf oolitic and skeletal carbonates and shales; 

outer-shelf molluscan-micritic limestones and shales; and slope 

and basin dark organic shales.

Outcrops along the western basin margin exhibit depositional 

characteristics slmllar to those of the subsurface. In the western 

outcrop area. lithostratigraphic units are time-transgressive from 

south to north toward the basin center. In the northwestern 

outcrop area (Malargue) the timing and depositional response to 

eustatic changes can be documented through interpretation of 

detailed stratigraphic and paleontologic observations by Mitchum, 

and Uliana (1985) and other authors.

To recreate the geometries that Mitchum, and Uliana (1985) had 

mapped we first simulated the area as extending hypothetically 

beyond the area of interest.  This was done to avoid unrealistic 

edge effects induced by the simulation.
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1. The top plot shows the shale, sand and carbonate lithology ratios in the basin as shale, sand and 

carbonate ratios in the basin.  The space to the left of the simulation region was needed to correct for 

boundary conditions.  Shale, sand and carbonates are represented as ratios.

2. The bottom plot shows hydrocarbon maturation and gradient lines for  input parameters having 

constant surface temperature of 14 degrees C and constant gradient values of 0.1 degrees C per meter.

Basin extension for boundary 

conditions

3. The top plot shows sequences having boundaries defined at user defined points on sea level 

curve.  

4. The bottom plot is an example of selecting a portion of the sea level curve to be highlighted in 

the basin plot. Also in this example, the simulation region has been highlighted then displayed as a 

zoomed view in the lower plot.
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SEDPAK System

Software Development History
• First version was written in Mainframe Fortran
• SEDFIL converted to Unix C language and renamed SEDPAK
• Real-time plotting in X-Window System
• (Industrial Consortium funding begins
• Keyword-Value File format (.db) for input files 
• New depositional algorithms
• Motif Editor and Execution user interface
• WCL Widget and VOGLE vector graphics libraries
• Ported to AIX, BSD, Solaris, IRIX
• Includes examples and test files
• Industrial Consortium funding ends)
• Ported to Linux
• Not open source yet, but free to download

New Python Integration

• Added user functionality without major modifications to SEDPAK source code
• Python language
• Startup Menu
• Integrated Help
• Snapshot and movie files
• Line vector over scanned image overlay

Lessons Learned

• Low-level user interface development can quickly consume all resources
• Avoid operating system and compiler dependencies
• Avoid different 32-bit and 64-bit operating system releases
• Use platform independent tools and libraries

Proposed Sedpak-Next Generation (Plans)

• Open Source IPython
• Interpreted, not compiled, no 32-64 bit
• Interactive
• 2-D space first 
• Tight control and inspection of each time step
• Spreadsheet integration
• Capable of web hosting
• Platform independent
• Ubuntu Linux Live CD, native or virtual machine
• Avoid different 32-bit and 64-bit operating system dependencies
• Use platform independent tools and libraries

Information and download:

sedpak.geol.sc.edu


