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Abstract

The discovery of commercial oil and gas production from shale, or mudstone, reservoirs has dramatically changed how we explore for and
develop oil and gas accumulations. In conventional exploration, appraisal and development there is a fairly standard and accepted
application of processes and technologies. However, the processes and technologies that are employed in the exploration, appraisal and
development of mudstone reservoirs are significantly different, and they are often employed for different reasons and at different stages of
the cycle.

Prospect identification is always the initial phase of any exploration project. In most cases in the conventional world, this is a result of the
interpretation of seismic data, either 2D and/or 3D, in order to identify the areal extent of the prospect, which would typically be on the order
of a few hundred acres or in some instances a few thousand acres. However, in the unconventional world the identification is done at a basin
level and is not typically supported by seismic, but rather by detailed analysis of a few key wells and their associated petrophysical
attributes. Once those attributes are deemed to have the potential of supporting a commercially productive mudstone reservoir, then the
utilization of seismic might be employed to help define the boundaries of the reservoir. However, that would typically be the exception as
the reservoir boundaries are generally defined by the configuration of the basin, which is generally fairly well understood and can encompass
a million acres or more.

Once the prospect has been identified, the evaluation processes during the exploratory drilling phase are dramatically different. During
conventional exploration the validation of the presence, or lack, of hydrocarbons is largely done by the acquisition and interpretation of data
from open hole wireline logs. While cores, either whole or sidewall, will often be taken, they are typically acquired not to validate the
productivity of the reservoir but rather to supplement the open hole log data. In unconventional exploration, the opposite is the case. While
the open hole logs are extremely important once the discovery is made to calibrate the reservoir, the most critical data around the validation
of the quality of the reservoir is the detailed analysis of the rock acquired from whole core. While some of the attributes that are measured
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from the mudstone core are common to conventional exploration, there are many more measurements that are taken on mudstone reservoirs
that are totally unique to this type of reservoir.

As the prospect moves into appraisal and development mode, there are also unique processes and technologies in the unconventional world
that are used to more fully understand the reservoir. The most important of those is the calibration, through the use of specific algorithms, of
the data acquired from the whole core data to the open hole data that is being acquired from the appraisal and development drilling. Because
the cost and time necessary to acquire an extensive collection of whole core data can be prohibitive, there will be a limited number of wells
from which whole core is taken in any given field. Therefore, it is critical to be able to calibrate the various measurements from the whole
core to the open hole log data that will be available on many more wells. This is also the point during which 3D seismic would be acquired
as opposed to the acquisition of that type of data during the identification process. In unconventional development, the primary benefit of the
3D seismic data is not to identify where you want to drill, but where you do not want to drill. Specifically, the horizontal lateral is placed to
minimize the effect of faulting on the lateral.

Throughout the entire period of field appraisal and development, the practice of geosteering is critical to the economic success of the field.
Because virtually all of the unconventional development is done with the application of horizontal drilling, it is critically important that the
drill bit maintain its position within the highest quality reservoir while the lateral is being drilled. Since the drilling operations are performed
around the clock, and unexpected changes in dip or the presence of faults can cause the bit to rapidly change its relative stratigraphic
position, a Gamma Ray tool is incorporated into the bottom hole drilling assembly in order to provide continuous measured depth Gamma
Ray log data, which is then converted to a true vertical depth (TVD) log using software designed specifically for this process. This TVD log
data is subsequently correlated with nearby well control to determine where the lateral is positioned stratigraphically at all times during the
drilling operation. When the bit has been interpreted to be out of the desired stratigraphic section, or target window, it is the responsibility of
the geosteerer to collaborate with the drilling organization to make the necessary changes to get the bit back into the target window.
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Brief History of Shale Exploration oo
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= George Mitchell and Mitchell Energy pioneered shale exploration in the Barnett in
the early 1980’s

= By the late 1990’s they had proven that vertical Barnett wells were commercially
viable

® |n the early 2000’s a move was made to drill horizontally in the Barnett, but
completion technology was lagging and results were marginal

® |n 2006 the use of isolated multi-stage completions was proven to be successful
which was the true game changer for horizontal drilling in shale reservoirs




Growth of North America Shale Production

*  The development of isolated multi-stage hydraulic fracturing in 2006 caused a dramatic increase in shale
production

* By 2011 the Haynesville Shale surpassed the Barnett as nation’s leading shale play

Development of isolated multi-stage
hydraulic fracturing
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Contrasting the Methodologies of Exploration bhpbiﬁit‘on

Conventional

® Prospect identification focuses “outside in”
® Seismic control works “outside in”

® Stratigraphic support eventually focuses on
facies analysis local to the prospect

® Reservoir quality issues are relegated to
the area of the prospect

resourcing the future

Unconventional

= Project identification focuses “inside out”
= Seismic control works “inside out”

= Stratigraphic support focuses on analysis
of the entire basin

= Reservoir quality analysis is required over
a very broad area of the basin




Prospect Identification: Conventional Analogy bhpbiﬁiﬁ’n
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Discoveries i = [Lusreet |

Deep Water Gulf of Mexico Prospect

Structurally controlled and supported by local analogs

At time of Prospect Identification, there were three significant analogs in the area of the prospect

The area of the prospect was on the order of 10K acres with Resource Potential in excess of several
hundred MMBOE
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Eagle Ford Shale Prospect

= Known regional source rock across large petroliferous basin

Reservoir quality and geochemical attributes poorly understood

The area of the prospect was >10 MM acres with high-side Resource Potential of >10 BBOE
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® |n early 2008 the CEO of Petrohawk charged the Exploration team to find another
“‘Haynesville-like” play

= We targeted the Eagle Ford Shale based on its significance as a regional source rock

— Q1: Mapped the Eagle Ford across the entire Gulf Coast Basin and identified an
anomalously thick, porous and highly resistive Eagle Ford section in La Salle and
McMullen Counties

— Q2: Acquired Eagle Ford cuttings on a key well and had them analyzed for TOC,
VRo and other key parameters

— Q3: Acquired ~160,000 acres and spudded the initial test well

— Q4: Completed it in October 2008 for 7.6 Mmcf/d and 251 Bc/d
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Key Finding #1: sdl
World Class Petrophysical Characteristics bhpbilliton
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Key Finding #3:

Seismic Definition of the Reservoir
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Hawkville Field in Late 2008 bhpbilliton
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The Eagle Ford Shale in 2012
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Eagle Ford Shale
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Night View of Texas by Satellite bhpbiﬁit‘o’n
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Unconventional Appraisal
Process




Critical Data for Effective Appraisal Program: odl
Core Data and “Core to Log” Data bhpbilliton
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® There is nothing more critical to the evaluation of a shale resource than the
extensive data gathered from whole core analysis:

* Measurement of “conventional” reservoir attributes such as Porosity, Sw,
Permeability, etc.

» Identify and measure the mineralogy, specifically clay minerals versus “coarse-
grained” constituents

* Measurement of key geochemical (TOC, Thermal Maturity, etc.) and geomechanical
attributes (Young’s Modulus and Poisson’s Ratio)

* Most importantly, calibrate core measurements to conventional open hole log
suites, therefore expanding knowledge regarding reservoir characterization,
formation evaluation (OGIP, Recovery and EUR) and optimization of the hydraulic
fracture stimulation
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Pilot Wells During Appraisal Process bhpbiﬁifon
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» Essential to acquire acceptable “grid” of open hole data subsequent to discovery

» Percentage of wells with pilot holes with complete data suite (core plus full
complement of open hole logs) is low, but it is critical to have adequate baseline of
core data

* Collective data set will enhance:
o Reservoir characterization
o ldentify optimum stratigraphic target for lateral

o Help determine the optimum stimulation “recipe” (fluid compatibility ,
geomechanics, stress regime, fracture density, etc.)

o Provide basis for creating algorithms that translate core data to log data
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Analytical Process from Core bhpbilliton
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= Complete Cored Interval
o Spectral Core Gamma
o Fracture & Sedimentological Description
o Core Photography
= Basic Rock Properties
o Porosity characterization (GRI method)
o Steady-state nano-permeability (CT-Scan plugs)

= Reservoir Geology & Geochemistry

o Geochemistry (TOC, Pyrolysis, Vitrinite Reflectance)
o Thin Section Petrography & FIB SEM
o X-Ray Diffraction



Analytical Process from Core (continued)

= Adsorption & Desorption

o Desorbed gas content & composition
o Adsorption isotherm
o Isotope Analysis

= Completion & Stimulation

o Geomechanical Properties (Single-State & Multi-Stage)
o Proppant Embedment and Fracture Conductivity
o Capillary Suction (CST) and Roller-Oven Testing
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Basic Petrophysical Workflow
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Core to Log Calibration: TOC-Porosity- bhpbiﬁiﬁln
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Core to Log Calibration: Lithology

Dolomite 1.1%
Pyrite 3.1%
Plagioclase 3.2%

"

Quartz
15.4%

ol
bhpbilliton

resourcing the future

* Key Element to Mineral Conversions

QFM ~2.139* Si
Calcite ~ 2.497 Ca

Calcite + Dolomite ~ -7.5 + 2.69 (Ca + 1.455 Mg)
Pyrite =1.8709 S

Kerogen ~0.83 /TOC

Clay ~ (1- sum of above)

(Source : Herron and Herron, 1998)
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Core to Log Calibration: Geomechanics bhpbilliton

resourcing the future

Straight line 9 6 9
¥=212.79 +(0.55 " x)
9000 r2=1.000 Sonic I Elastic Properties I Rock Strength
880 Use as a “proxy” for estimating {8 e B
%800 Vs | DTS gl g
R when dipole or sonic scanner b aE] i e
g datais unavailable TR &
H 8000 L i s
: sty
d 7800 3 ok
§ Softer e
= 7600 . r
7400 . i i 21 L
1. Use industry standard ¢ > A UnlaX|aI_
13000 13500 14000 14500 15000 15500 16000 algorithms = ;h 2 Compressive
Velocity - Vp (ftisec) - High Axial Pressure ~ tO Calculate dynamlc eIaStIC : 1: Mr?_;ﬂ : Strength
modulii : i . (UCS ™)
0 (Vp, Vs, RhoB) < Az S B from DTC or Vp
Young’s Modulus Lambda f'__%,,
: Static ~ 0.65 * Dynamic Mu s
5 R2 ~59% Bulk Modulus Harder ;{
P-wave Modulus i
' Poisson’s Ratio o=
s Young’s Modulus o
> s
Q ¢ . . 2
= 2. Convert from dynamic to static B RERIRRRES
nh modulii for fracture propagation  [E-8 T Es 5
; modeling Softer Pdgeile
. Dynamic-static relationships ' ;
are derived from multi-stage =S\ o
' Triaxial testing where both static ——
, and dynamic measurements
are collected simultaneously




Core to Log: QC and Interpretation bhpbiﬁiﬁ‘n
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Facies Extraction Using Geomechanical Data ohpbillton
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Facies extracted from Crossplot
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The Whole Core Itself: o b_lo:_f'
Macro Observations From the Eagle Ford ok nnel
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The Relationship of Eagle Ford Core 37
to Gamma Ray Showing bhpbilliton
Significant Vertical Heterogeneity S
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Mineralogical Analysis: Relationship of Texture bhpbiﬁiton

and Composition to Shale Reservoir Quality sourcing h e
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« Epi-fluorescence Petrography
o Lithology
o Rock Type
o Mineralogy
o Micro-Fractures

« X-ray Diffraction Analysis
o Mineralogy

o V Clay

« SEM Analysis
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Micro-Textural Relationships: | 37
The Importance of Scale to Proper Reservoir bhpbilliton
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Standard 30-micron-thick slide: Ultra-Thin (20-micron) slide:
No apparent grain support which Significant grain support which
would suggest poor reservoir quality leads to better reservoir quality

| Courtesy of Core Laboratories |
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~ MINERALOGY by XRD
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| Maverick Basin Area | | Hawkville Area | | San Marcos Area | | East Texas Area |
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Source Rock Reservoirs: Observed Maturity
Effects
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Measuring Stress: Essential to Understand oh sdl
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GeomeChanICS Of the ReserVO|r resourcing the future

= | aboratory Measurement

o Static and Dynamic Measurements on Core Samples (Young's
Modulus)

" Log Data

o Full-Waveform Acoustic Logs (Dipole Sonic)
o Bulk density
o Lithology
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3D Seismic Data: Critical to a Successful bhpbilfifo‘n
Development Program resourcing the future
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. The cost of 3D seismic data is minimal in the total field development cost

. 3D seismic data is critical in identifying faults and dip changes that could compromise the
stratigraphic targeting of a horizontal wellbore

. Merged ~650 square miles of acquired proprietary data and licensed data in Hawkville
Field



Geo-Steering: An Important New Geoscience SKill _-‘_“
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= Horizontal drilling creates significant geological challenges

= Unforeseen dip changes and/or faults can cause a well to be
out of zone for a large portion of a lateral

=  The combination of utilizing 3D seismic data and Measured
Depth (MD) to True Vertical Depth (TVD) Gamma Ray
correlation allows the geologist to direct the drilling operation
to allow the well to stay within the target window

»  The post-drill geologic interpretation of the wellbore also
provides insight into the completion design and can cause the
completion engineer to vary certain stages of the hydraulic
fracture stimulation depending on the inferred reservoir quality
within each stage




Pre-Drill Well Plan Prior to 3D Seismic Data ol
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=  Well plan is designed using subsurface
mapping from well control and regional

2D seismic data
— 11,000’

= Degree of confidence in the interpretation
Is fairly low

_Top EFS @ 11,500°

Top BUDA @ 11,800’ -

Target Line: 11578’ TVD @ Zero Vertical Section Assuming Average 2 degree dip
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Pre-Seismic Geosteering Interpretation at TD bhpbilliton
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3D Seismic Acquired After Completion ohpbilliton
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Geosteering Interpretation Using 3D Seismic Data bhpbilliton
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Stage by Stage Fracture Stimulation Montage bhpbilliton
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Microseismic Data: Down-Hole View of Fracture &l
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" The geologic aspects of the Exploration process in shale reservoirs require
an “inverted” thought process as compared to conventional exploration and
usually is done with insufficient knowledge of reservoir quality

" The geologic aspects of the Appraisal process in shale reservoirs are highly
dependent on an understanding of the “nano” elements of the reservoir and
require a tremendous amount of data gathering and analysis over an
extremely large area

" The geologic aspects of the Development process in shale reservoirs have
generated a new set of skills, the most prominent being geo-steering, which is
exciting, challenging and cross functional with several engineering disciplines



odl

Acknowledgments bhpbilliton

resourcing the future

= BHP Billiton Petroleum colleagues, specifically Vanon Sun Chee Fore, Terry
Gebhardt, John Goss, Alan Frink, Andy Pepper, Melissa Florian and Kelley
O’Brien

= Core Laboratories, specifically Randy Miller

m Seitel, Inc.




