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Abstract

Normal faults and igneous intrusion complexes can individually influence sedimentary basin evolution and petroleum system development
through compartmentalisation, trap formation and the generation of hydrocarbon migration pathways. Whilst our understanding of fault and
intrusive systems continues to improve separately, few studies have considered the interaction of the two and the potential impacts on
petroleum system development. Here, we present 3D seismic reflection interpretations detailing the relationship between saucer-shaped sills
and faults within the Exmouth sub-basin located offshore NW Australia. Transgressive sill segments are frequently observed to preferentially
exploit specific pre-existing faults, potentially forming localised seals. Furthermore, mound-shaped structures, interpreted to represent
hydrothermal vents, are often developed above the upper tips of the faults that are intruded by the sills. We consider how the fault-seal
potential, which is related to fault throw and the physical properties of the faulted lithologies, controls the styles of both intrusive magmatic and
extrusive hydrothermal products. This study demonstrates the complex interactions that may occur between normal fault arrays and igneous
systems, and highlights how fluid migration pathways and hydrocarbon traps may be modified in petroliferous basins.
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Scenario 2—‘shadow zone’ creation

Single large intrusion/or several nested sills pond around lower sequences of sedimentary fill
acting as barriers to hydrocarbon migration, and creating a shadow zone above the intrusions where traps are not filled

To test these hypotheses we need to
understand what controls the location and
mechanisms of intrusions along faults.
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Scenario 4—compartmentalisation of source rock

Intrusions compartmentalise source rock, preventing migration and leading to overall reduction
in HC volume available to charge reservoirs
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« ~N-S trending faults have large throws and extend into Lower
Variance Jurassic successions

» Denser network of NE-SW (some NW-SE) trending faults restricted
to Upper Jurassic and Berriasian
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* VVolcano truncates Kimmeridgian strata and onlapped by the Tithonian Dingo Claystone (source rock)
* VVolcano displaced by Berriasian faults that controlled thickness of Macedon Sandstone (reservoir)

* Succession capped by the Muderong Shale (seal)

« Step in the intrusion does not fault displacement at shallower level; many sills not offset by faults
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TO — pre-intrusion stratigraphy
T1 — sill intrusion and step development

T2 — juxtaposition of preferentially intruded
horizons across pre-existing fault

T3 — step developed along fault
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Mechanisms of fault-seal generation:
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* Intrusions may affect vertical and lateral migration pathways

* Impact on lateral connectivity reduced because intrusion is likely to be focused
at specific fault segments
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Conclusions

Faults can provide low-permeability magma conduits

Intrusions exploit laterally restricted fault segments (e.g.,
convex-into-the-footwall corrugations)

Magma emplacement and intrusion geometry controlled
by stress-field variations and fault rock lithology

Intrusion and fault interactions may affect:
Fault seal potential

Hydrocarbon migration

Hydrothermal systems

Location of volcanic vents





