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Abstract 
 
Geophysical reservoir characterization requires building a nonlinear relation between seismic attributes and rock/fluid properties computed from well 
logs. With such a relation, the rock/fluid properties computed from well logs can be extended to inter-well points. Neural networks can be employed to 
obtain this nonlinear relation. In this study, radial basis function (RBF) neural networks are evaluated in the application of porosity prediction. The 
structure of a typical RBF network is composed of an input layer, an output layer and a hidden layer. Currently, RBF network is only used as single 
hidden layer network in geophysics applications; however, multilayer RBF networks have already been dealt with by some researchers (Chao et al., 2001) 
and according to their study, there exists a performance improvement when multiple hidden layers are used. This study explores the possibility of 
applying multilayer RBF networks in reservoir characterization, dealing with well logs and seismic data and to design an optimal structure for a RBF 
network with fixed number of nodes. The seismic and well log data used in this study are the public part of the Boonsville 3-D seismic dataset, which is 
from the Boonsville field in north central Texas. A series of tests are carried out to examine performance and inspired by the comparative results of RBF 
and multilayer perceptron (MLP) networks, a hybrid of RBF and MLP called centroid based multilayer perception (CMLP) network is employed for 
porosity prediction. Finally, the best CMLP network is used for porosity prediction. Porosity distribution map constructed from seven seismic attributes 
using a triple layer CMLP neural network shows good correlation with well data. Because of the assumptions and approximations during the processes of 
porosity log prediction, porosity downscaling and neural network prediction, the average porosity prediction error is around 20%. 
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Introduction
Subsurface seismic characterization requires building a relationship (commonly non-
linear) between seismic attributes and rock/fluid properties. With such a relationship, the
rock/fluid properties computed from well logs can be extended to interwell points
(Figure 1). Neural networks are powerful tools to obtain this non-linear relation. In this
study, radial basis function (RBF) neural networks with different structures are evaluated
and applied to porosity prediction. A hybrid of RBF and multilayer perceptron neural
networks (MLP) shows the best performance in this study.

Figure 1: A model showing expanding the rock/fluid property at well locations to
interwell space using the relation between seismic data and well log data.

Data
A time-migrated seismic volume and 14 wells which are from the public part of the
Boonsville 3-D seismic data set are used for this study. Log prediction for sonic curves
is deployed to overcome the log deficiency. Interval between MFS90 and MFS20 is
used to train and test the neural networks. Final porosity prediction is done along Caddo
(Figure 3).

Desired non-linear relation

Figure 2: The study area is located in
Boonsville Field in the Fort Worth Basin,
north central Texas.

Figure 3: Stratigraphic nomenclature in Bend
Conglomerate. Red lines indicate the interval
used for training and testing neural networks.
Black box indicates the Caddo.

Structure of Neural Networks

Figure 4: The traditional pattern of a single layer 
RBF neural network.

Figure 5: A typical multilayer RBF
neural network with 2 hidden layers.

Research Procedure

Figure 7: Flowchart for training a neural network and applying it for prediction.

Testing of Neural Networks and Porosity Mapping
Tests are propelled with a group of inputs (7 seismic attributes including acoustic
impedance) and an output (porosity). A total number of 14 wells are used in this study,
among which 10 are in the training group and the other 4 act as testing group. Data in
training group are randomized and 20 percent of which are used for cross-validation.
Mean square error (MSE) is used to evaluate the networks’ performance. MLP networks
are used for comparison. An evolution of RBF—centroid-based multilayer perceptron
(CMLP, which means a MLP network with radial basis functions in the first hidden
layer, just like a hybrid of RBF and MLP) network gives a overall best performance
among all tested neural networks.

Testing results for neural networks with different structures

Table 1: Training error (T MSE) and cross-validation error (CV MSE) for RBF, MLP and CMLP
networks. In the “structure” column, “20” means one hidden layer and 20 nodes in this layer, and
“100 100” means two hidden layers with 100 nodes in each layer; ‘G’ refers to Gaussian, and ‘T’
refers to hyperbolic tangent. The overall best performance (shown as yellow cells) appears at
CMLP with “G40 T24 T8” or RBF “100 100” ( if excluding CMLP types).

Figure 8 (up): Testing results for four
wells using CMLP “G40 T24 T8”. Blue
solid curves are desired outputs and
maroon dashed curves are predicted
outputs.

Figure 9 (left): Average porosity below
horizon MFS90 with a window 30 ms
obtained by CMLP “G40 T24 T8”.

Conclusions
Multilayer RBF neural network outperforms traditional single layer RBF networks, but an
increase of the number of hidden layers will not guarantee an increase of performance. In
this study, 2 hidden layers is the most suitable case.
CMLP, the hybrid of RBF and MLP powered by genetic algorithm can give an overall
best mapping for this study.
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Figure 6: Typical structure of a centroid-based multilayer perceptron (CMLP) neural network. 0
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MFS90

MFS20

By Training MSE By Cross-validation MSE

MLP 20 0.009665 0.027259 RBF 100 100 0.019249 0.0206
MLP 10 0.015336 0.02849 MLP 50 50 50 0.02042 0.020888
RBF 100 100 0.019249 0.0206 RBF 80 0.020375 0.020902
MLP 200 200 0.020053 0.022095 RBF 10 5 0.023315 0.021081
RBF 100 50 0.0202 0.024914 MLP 50 50 50 50 0.021293 0.021257
RBF 80 0.020375 0.020902 RBF 25 0.022668 0.021306
MLP 50 50 50 0.02042 0.020888 RBF 150 0.022012 0.021494
MLP 50 0.020461 0.022514 RBF 5 20 0.022757 0.021495
MLP 100 100 100 100 0.020861 0.023116 RBF 50 50 0.022334 0.021519
MLP 100 100 0.020924 0.021635 RBF 5 100 0.023327 0.021524

CMLP Neural Networks
Structure T MSE CV MSE

T22 G50 0.020618 0.023727
G44 T14 0.019483 0.021734
G40 T24 T8 0.018875 0.020508
G44 T20 T19 T9 0.02136 0.02153
G39 T20 T20 T13 T9 0.02141 0.022151

Energy

Dominant frequency

Cubic similarity

Steepness Phase rotation of 90˚

Amplitude variance

Acoustic impedance
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