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Abstract

Laboratory measured sonic velocities in carbonates are related to porosity, pore architecture, and diagenetic alterations, which are in turn
related to the depositional environment and basin history. Understanding how these properties are related allows quantitative correlation of
sonic velocity response to permeability. Predictable relationships between sonic velocity response and porosity are recognized in carbonate
rocks, but the data have significant scatter. For example, a porosity of 40% can produce an acoustic velocity response varying from 2400-5000
m/s. The reason for this scatter is variations in pore architecture, depositional fabric, and diagenetic history. Classification by primary pore type
(intergranular, moldic, etc.) decreases the scatter but not enough to establish a quantitative relationship. Additional controls include the
percentage of micro- and macro-porosity, dolomitization, non-carbonate mineralogy, and pore geometry. Because of this variability, laboratory
measured sonic velocity response must be compared to petrophysical properties unique to each reservoir.

The Mississippi Lime play, a Mid-Continent Mississippian carbonate, is primarily located in Oklahoma and Kansas. Depositional environments
vary from a deep basin to carbonate slope and ramp. Regional depositional settings and diagenetic alterations are mostly agreed upon; however
details controlling reservoir quality are poorly understood. Petrophysical analyses of a Mississippi Lime outcrop will be integrated with
laboratory sonic velocity response to quantify the porosity-pore architecture-permeability relationship. Laboratory analysis and field
observations will be correlated with high resolution sequence stratigraphic studies to correlate results with specific facies and depositional
environments. Quantification of sonic velocity relationships will provide valuable insight into the reservoir characterization and how to target
key intervals within the Mississippian play.
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Research Goal

Utilize sonic velocity (laboratory measured
and wireline logs) coupled with
characterization of pore architecture at the
macro-, meso-, micro- and nanoscale
predict producing reservoir facies and
producing intervals in an unconventional
carbonate reservoir.
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Carbonate Rock Acoustic Response
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Velocity Correlation to Pore Type
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Velocity-Porosity Relationship
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Velocity-Porosity Relationship
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Predictable Velocity from Pore Type

Velocity
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Velocity Correlation to Permeability
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Pathway to Permeability Prediction
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Pore Architecture (Digital Image Analysis)
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Permeability Prediction from Pore
Architecture and Primary Porosity
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Methodology

Integrated Reservoir Characterization
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Mississippian Data Location Map




Porosity vs. Permeabillity

Permeabllity (mD)

1.0000 =
T .
- . S
0.1000 = * *
E L3
T P *
T 0:“‘. * ¢ & F ¢
i $o 0 p 3 o o*, o ® b 4
0.0100 = ot 300 ., ry 3' @
PR SO T8 B NI
il ’0\ ::.::’““’ * .
+ * s e » . ®e k.
¢ o :: % * AR R &
aame RSP < Tet
e oo .
. *®» * .
see oo
0.0001 >4 *— ; i i i 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Porosity (%)




Macropore vs. Nanopore Systems
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Velocity vs. Porosity
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Oil Saturation, Porosity, and Permeability
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Velocity vs. Oil Saturated Zones
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Core Examination

Large shoaling upward sequence with smaller shoaling upward
packages in an overall regressive sequence.

Very fine grain, black laminated, carbonate mudstone with mm-
scale bioturbation,

Bioturbated mudstone to crinoid-brachiopod wackestone.

Fine grain, massively bedded, wackestone with large scale
bioturbation.




Wireline Log Correlation
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Velocity Correlation to Facies
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Velocity, Facies & Oil Saturation
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Pore Classification for Mudrocks
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Pore Architecture
Thin Section Photomicrographs
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Pore Architecture
SEM Photomicrographs
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Pore Architecture
SEM Photomicrographs
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Preliminary Conclusions

Acoustic response of an unconventional carbonate is
consistent with previous work.

Acoustic response can be correlated to facies.

Oil Saturated zones correlate with facies and acoustic
response.

Pore types range from the macro-, meso-, micro- and
nanoscale.

The entire core shoals upward and has several shoaling
upward cycles observed in core.

Shoaling upward cycles correlate to wireline logs
(gamma ray).




Continued (Future) Work

Argon milling at 0.5 to 1.0 micron increments
with SEM and digital image analyses.

Integration of core and outcrop analyses from
Northern Oklahoma, Arkansas and Missouiri.

Correlation to a sequence stratigraphic
framework.

Data extrapolation using 3-D modeling software
to test predictability of permeability from sonic
velocity and characterization of pore architecture
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