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Abstract

The Arkoma Basin is an arcuate structural feature that extends from the Gulf coastal plain in central Arkansas westward 400
km to the Arbuckle Mountains in south-central Oklahoma. The basin is characterized by down-to-the-south normal faults that
affect Early Pennsylvanian and older rocks. Many folds in the Arkoma basin were produced by horizontal compressive forces
related to the Ouachita orogeny. The compressive forces were directed north and northwest and decreased in intensity away
from the Ouachita Mountains region. However, the deep structure of the basin is poorly known, and Precambrian basement
structures in other areas of the continental United States have strongly influenced later Proterozoic and Phanerozoic tectonism
within the continent.

The aim of this paper is to map the basement surface and the associated structural elements in the Arkoma basin area as well as
to investigate the relationship between these structures and the Phanerozoic tectonic deformation in the area. We are
calculating the depth to the basement surface using the Euler magnetic depth estimation method. Structural interpretation of the
3D seismic data of the basement surface is being conducted. Coherence and curvatures as well as other seismic attributes will
be applied to the 3D seismic volume to delineate different subtle structural and stratigraphic features affecting the basement
surface. Gravity modeling is being used as the integrative platform to synthesize seismic and well data and the depths obtained
using the Euler technique.
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Aim of the study

The study aims to integrate 3D seismic, gravity and magnetic data as well as
well data for better mapping and illumination of the basement structures in
Arkoma basin.

Importance of mapping basement structures:

« Precambrian basement structures have strongly affected the Phanerozoic
tectonics in the continental United States (Smith et. al., 2005).

« Basement structures in Fort Worth Basin are responsible for the
intra-sedimentary features such as faults, fractures and collapse features
in the Ellenberger Group and Viola Limestone, (Elebiju et. al., 2008)



Tectonic Background

The North America continent

1- Plate collision of Archean and Proterozoic blocks

2- Progressive addition of volcanic arcs and oceanic terranes accreted
along southern plate margins.

Rodinia, a supercontinent, was the result of continental growth.

Rodinia began to break up apart around 600 Ma.

Rifted margin developed about 550 Ma (Keller et. al., 1983).
Passive continental margin with carbonate deposition.

The southern margin changed to active margin characterized by
clastic sedimentation (Viele and Thomas, 1989).

Subduction and collision developed

The Quachita orogenic belt developed as the result of the
collision and Arkoma basin was formed as a foreland basin.



Regional Geology and Tectonic Settin

Arkoma Quachita basin orogen
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Location map of study area
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Structural Cross Section
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PLATE 7B
STRUCTURAL CROSS SECTION OK4 ACROSS THE OKLAHOMA OUACHITA MOUNTAINS

By
J. Kaspar Arbenz
2008

Structural cross section OK4 along Ouachita orogenic belt, Arbenz, 2008.




Structural Setting of the Study Area
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Methodology

« Magnetic data
Edge Detection Techniques
Euler Depth Estimation Method

« 3D seismic data
Interpretation of the faults
Volumetric seismic attributes (enhances the faults appearance)
Picking the basement surface
Seismic surface attributes through the basement surface

 Gravity and well data
Separation of residual-regional anomaly
Density models along selected profiles on the residual gravity map
Top to the Arbuckle & top to the basement
Densities for the formations (Regional models and literature)



Gravity and Magnetic Data Analysis
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Bouguer gravity map of Arkoma basin and its
surrounding. The seismic survey outlines is
shown in red, Euler magnetic depth estimation
in black.

Total magnetic intensity map of the
area shown by black rectangle.




Gravity and Magnetic Data Analysis

Edge Detection Techniques

The total horizontal derivative peaks over
the edges and is zero over the body.

Total horizontal derivative

- ()

Where T is the magnetic or gravity field

(Verduzco et. al., 2004)
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Gravity and Magnetic Data Analysis

Edge Detection Techniques

The tilt derivative has high positive value
over the source and low value (close to
zero) at/or near the edge.

Tilt Derivative

TD =tan™ VD
THD

VD vertical component of gradient

THD nhorizontal component of gradient
(Verduzco et. al., 2004)
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Gravity and Magnetic Data Analysis

Basement Depth Estimation
Euler Deconvolution Method

« Determine the location and depth to magnetic source (Phillips, 2007).

 Delineate magnetic boundary or fault trends (Reid et al., 1990).

Euler's homogeneity relation

, : , : J .
[X—IU}Q—T_ UJ_).-fﬂ}g_j:-F (Z—:U}f—T = N(B-T)

dx dz
where (X, Yo, Zp) IS the position of a source, whose total field T is detected at (X, y, z).

B is the regional field or background value.

N is the degree of homogeneity, and geophysicaly known as a structural index (SI:
Thompson, 1982).



Gravity and Magnetic Data Analysis

Euler Depth Estimation Method
Results

34°30°

Euler solution plot using structural

34°20°

index (SI=0.0 faults) shows clustering
of magnetic sources solutions along
some trends which may reflect fault
directions. The maximum depth to

these faults is about 3500 meters.
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Gravity and Magnetic Data Analysis

Euler Depth Estimation & Edge Detection
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Two figures show the solution cluster superimposed on the total horizontal
derivative and tilt derivative of the magnetic data. The cluster shows good
correlation with the edges of the source body.




3D Seismic Data and Seismic Attributes
Interpretation of Basement Structures
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Vertical slice (Xline 180) with initial interpretation of some faults, basement,
and Arbuckle horizons.




3D Seismic Data and Seismic Attributes

i Time slices (1650 ms)
through the coherence
and variance volumes
show the discontinuities
(faults and deformed
zones) as incoherent

black lineaments.
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3D Seismic Data and Seismic Attributes
Volumetric Attributes (Curvature)

Time slices (1500 ms) through
the most positive and most
negative curvatures volumes
shows the faults trends.

The most positive curvature
shows maximum values over
the upthrown blocks and the
anticlinal features, while the
most negative curvature
shows maximum values over
the downthrown blocks and
the synclinal features.




3D Seismic Data and Seismic Attributes

Generating the basement surface

N

3D view shows the basement surface with intensive irregular
topography due to erosion and an area of extensive deformation.




3D Seismic Data and Seismic Attributes

Seismic attributes through the basement surface
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Horizon slice of the dip
magnitude through the
basement surface.

Horizon slice of the dip
azimuth shows the
general dip (magenta)
Is towards the north
and north east with
irregular dips in
different directions.



3D Seismic Data and Seismic Attributes

Seismic attributes through the basement Surface

Energy Ratio Similarity
—max

My Y

Horizon slice of
coherence through the
basement surface
shows low coherent
zone in dark color
corresponding to the
deformed block.

Co-rendered horizon
slices of the dip
maghnitude and the
coherence show a
good correlation
between low
coherence and high
dip angle deformed
zone.



Comparison of Results from Magnetic and
Seismic data

Euler solution cluster plot and time slice (1500 ms) through the coherence
volume showing a good correlation of the fault trends.



Modeling
Density models
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Residual gravity after upward continuation
to 40 km shows the location of wells and
two selected profiles for the density




Regional gravity model |
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Conclusion

* The basement surface has been subjected to extensive deformation
and erosion.

* The maximum depth to the faults which may affect the basement
surface is nearly about 3500 meters.

e Seismic and magnetic data show an E-W trend of faulting zone in
the northern part of the study area.

e Fault trends from Euler depth estimation method shows very
good correlation to the fault trends from seismic data.
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Cambrian Rifting as Part of the Break-up of
Rodinia

Trans- Superior
Hudson Province §

Wyoming

Province
—
ci-
eI

500 Km

Llano front

[ f '
Quachita thrust frc:»rﬁ”',? !

 Early Paleozoic continental margin

(modified from Barnes and others, 1999, originally modified from Man Schmus and others, 1998).




Tilt Derivative

Edge detection techniques

_, vertical component of gradient

TILT = tan - :
horizontal component of gradient

AHEIN

Where, df/dx, df/dy and df/dz are
the first-order derivatives in the
X,y and z directions

[I = I{]JHT.'IB.I -+ (_}-‘ = _}’u}ﬂ?]‘fﬂ_}’ + (E ~ Eﬂ)a}'?ﬂg_‘ = A,

where A incorporates amplitude, strike, and dip factors
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Figure 4. Ouachita PASSCAL seismic experiment velocity model. Modified from Keller
et al. (1989b) and Keller and Hatcher (1999). Numbers are velocities in km/s.

A velocity model derived from the PASSCAL Ouachita seismic experiments, COCORP reflection
profiles, gravity and magnetic data, along with drilling and geological data in an integrated
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