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Abstract

Relating diagenetic processes to porosity and permeability is essential for carbonate reservoir quality prediction. We utilize Miocene
heterozoan, photozoan, and oolitic - microbial sequences in SE Spain where paleotopography is preserved to evaluate the effect of a
mesohaline mixing-zone and multiple events of meteoric diagenesis on porosity within a well-constrained stratigraphic framework and
known sea-level history. Seven subaerial exposure surfaces allow evaluation of exposure duration, and climate on meteoric diagenesis.
Only minor diagenesis occurred during early arid and short-lived subaerial exposure events. Later end-Miocene dolomitization and
dissolution had the most profound effect on porosity. Dolomite §'°C and 'O range from +0.9 to +6.0%0 PDB, -4.5 to +3.0%o PDB,
respectively. Covariation suggests fluid mixing. Downdip areas have more enriched 5'*0 and 8'°C. Isotopic evaporation modeling of
the most positive 6180 suggests a salinity of 42 ppt. Fluid inclusion measurements of freezing point depression yield Tm-ice ranging
from -0.2 to -2.3 °C, indicating salinities ranging from 4 ppt to 43 ppt, with highest values in downdip areas. These data confirm fluid
mixing and rule out physical mixing or recrystallization of multiple dolomite phases. Dolomitization was from a mixture between
meteoric water and slightly evaporated seawater, here termed mesohaline mixing, a possible predictable type of dolomitization given
specific climate and hydrogeologic conditions. Petrographic relationships indicate mesohaline mixing created major moldic and vuggy
dissolution. Dolomitization was followed by 5 million years of subaerial exposure, during which times of more humid climates and
erosion during uplift resulted in two zones of significant calcite cementation, separated by a zone with little calcite cementation.
Calcites have negative 8'"°C and 8'0, and fluid inclusion Tm-ice of 0.0 °C, indicating precipitation from meteoric water. The two
cemented zones likely represent two different paleo-water tables formed during uplift and erosional downcutting. The results of
mesohaline mixing enhancing porosity and permeability in relation to paleotopography, and later stages of meteoric calcite
cementation decreasing porosity and permeability are predictable and can be incorporated into geomodels for better prediction of
porosity and permeability distribution in carbonate reservoirs.
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Diagenetic Controls on Porosity
and Permeability in Upper Miocene
Carbonates, La Molata, SE Spain
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Key Findings

1. Documents pervasive dolomitization in upper
Miocene carbonates from mixing of freshwater
and evaporated seawater. Mixing-zone
dolomitization remains alive.

2. Short-lived subaerial exposure during arid climate
seems to have had only a minor diagenetic effect
on porosity and permeability. In contrast, long-
lived surfaces of subaerial exposure and a wetter
climate led to more of an impact.

3. Aspects of setting, such as climate, duration of
exposure, paleotopography and hydrogeology are
significant controls on diagenesis.
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Location

Volcanic archipelago with
adjacent interconnected
Neogene basins.

Upper Miocene carbonates
were deposited on the flanks
of Neogene volcanic highs.




Stratigraphy

D DS1B —— SUBAERIAL EXPOSURE SURFACE
|:| DS1A |:| VOLCANIC BASEMENT 500 METERS

I:l REEE COREIALUSHDSS) ><-— FRACTURES WITHIN VOLCANIC BASEMENT

Modified from Franseen et al., (2005).




Paleotopographic Setting
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1. Subaerial exposure & Diagenesis
= DS1A, DS2, DS3, TCC1, 2, 3 sequences

v Neither extensive dissolution nor pervasive cementation.
v Fissures and autoclastic brecciation near surfaces.

v Vadose zone calcite cementation, and slight dissolution
of aragonitic components.




2. Dolomitization
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Dolomite Petrography

Dolomites from all sequences have similar CL characteristics.



Dolomitization & Dissolution

Moldic and vuggy dissolution is closely
associated with dolomite precipitation.
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Notice only the latest growth zones of dolomite exist in moldic
porosity, as seen in CL photomicrograph (arrow).



Origin of Dolomite

Stable Isotope Analysis

Modeling indicates
o Upslope correspondence to
4 Downslope seawater
evaporated by 16%,
43 ppt sainity.

§*C VPDB %o

Notice the
covariation between
5180 and 813C and
the negative as well
as positive 613C
values.




Origin of Dolomite

Fluid Inclusion Measurement
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Paleotopography & Diagenesis
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Conceptual Model
of Dolomitization
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e Superpositional relationship
suggests calcite precipitation
postdated dolomitization.

* Calcite cements filling
primary porosity as well as
secondary porosity. Textures
are consistent with phreatic
zone.
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Calcite Cement Distribution
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-6.00

Origin of Calcite

Stable Isotope Analysis
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® Carbon and
oxygen isotopes
range from - 6.0 to -
1.1%0 PDB for ™18Q,
--9.8 to + 2.0%0 PDB
for ™13C,

® Negative oxygen
and negative carbon
Isotope values.



Origin of Calcite

Fluid inclusion data

- Photomicrograph of a two phase
fluid inclusion in calcite cement
from artificial stretching (arrow).

Salinity Scale, ppt

Frequency histogram of
final melting temperature
of ice (Tm-ice).
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Mode at 0.0 °C indicates
calcite was precipitated
from fresh water.




Diagenetic Controls on Porosity/Permeability
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Thrombolite, porosity 34.7%,
permeability 6547 md.

Helium Porosity (%) Dolomite without any calcite
cement. Dolomitization was

25 30 35 40 45 50
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vuggy, moldic, and
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Diagenetic Controls on Porosity/Permeability
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Conclusions

1. Only minor dissolution and cementation during short-
lived and/or arid subaerial exposure, but extensive
cementation during long-lived subaerial exposure in a
wetter climate. Calcite cement was precipitated from
fresh water at two different levels, and had a major

Impact in reducing porosity and permeability. Its
Impact was facies specific.

2. Dolomitization is due to ascending freshwater-
mesohaline mixing. Dolomitization enhanced porosity
and permeability, and its distribution may be
predictable on the basis of understanding the
hydrogeology and paleotopography.
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