Submarine Levees: Form, Process and Reservoir Prediction*

Benjamin C. Kneller¹

Search and Discovery Article #50707 (2012)**
Posted August 31, 2012

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Long Beach, California, April 22-25, 2012
**AAPG©2012 Serial rights given by author. For all other rights contact author directly.

¹Geology and Petroleum Geology, University of Aberdeen, Aberdeen, United Kingdom (b.kneller@abdn.ac.uk)

Abstract

Submarine channel levees commonly show a regular decay in thickness away from their parent channel. The form of this decay (power-law or exponential) is governed by the flow processes over the levee(1), in particular by the rate of entrainment of ambient seawater, which is a function of the flow Richardson number. This in turn depends on the local slope on which the levees are built(2). Using characteristic scaling parameters(3,4) it is possible to generalize the form of the levee independently of its size. Calibrating with field data from an ancient slope channel system(5) one can deduce the exponent in the thickness scaling law, which is theoretically dependent only on the grain-size of the sediment.

The shape of the levee reflects the mean shape of the individual beds within it, which decay away from the channel; however, since mud and sand respond differently to the flow, the proportion of sand to mud in individual beds (and resulting net-to-gross) also decreases away from the channel. A similar scaling and calibration procedure using outcrop data can be applied to net-to-gross decay across the levee, in order to derive the exponent in the net-to-gross scaling law. This approach can be used to reduce substantially the uncertainty in reservoir prediction in levees.
References

Nakajima, T., and B. Kneller, in press, Quantitative analysis of the geometry of submarine levees: Sedimentology.

Submarine Levees: Form, Process and Reservoir Prediction

Ben Kneller

With thanks to Ian Kane, Takeshi Nakajima, Mason Dykstra, Daisy Pataki, Phil Thompson and Brendon Hall

Image from Deptuck et al., 2003
• General characteristics of levees
• Assumptions – how levees build
• Importance of flow stratification
• Significance of water entrainment
• Geometrical and lithological characterization
• Reservoir prediction – general models?
Levees make up a large part of the continental slope and rise

Congo Fan. Vittori et al., 2000
Modified from Roberts and Compani (1996)

- Decreasing grain-size
- Decreasing bed thickness
- Decreasing N/G
Grain size and density stratification of turbidity currents: consequences for overbank flow
Interaction of stratified flows with topography: internal Froude number

Dividing stream-line

Low Fr_i

Vertical density gradient

$$Fr_i = \frac{\bar{U}}{H \left(\frac{\partial \rho}{\partial z} / \rho_a \right)^{0.5}}$$

Height of dividing streamline $\approx H (1 - 2Fr_i)$

Deflection of lower parts of well stratified flows

High Fr_i
Prediction in levees: mathematical characterization

Hackbarth Shew, 1994; Badalini et al., 2000 and unpub. Data courtesy of Shell
Relationship between slope gradient and maximum levee gradient, θ

- Gradients on levee scale with regional slope
- Type of decay depends on regional slope

From Nakajima and Kneller (in press)
What explains the difference between power law and exponential decay?

\[T_x = f \left(\phi_0 e^{-\left(\frac{u_s}{uh} \right) x} \right) \]

No entrainment of ambient water \(\Rightarrow\) exponential decay

\[T_x = f \left(\phi_x \frac{u_s + E_0}{E_0} \right) \]

Constant entrainment of ambient water \(\Rightarrow\) power law decay

- \(u_s = \) settling velocity of particles
- \(\phi = \) suspended sediment concentration
- \(uh = \) discharge per unit width
- \(x = \) horizontal coordinate
- \(E_0 = \) entrainment rate of ambient water

From Birman, Meiburg and Kneller, 2009
Entrainment occurs when flow stratification is unstable: $Ri_g < 0.25$

\[
Ri_g = \frac{g}{\rho_a} \left(\frac{\partial \rho / \partial z}{\left(\partial u / \partial z \right)^2} \right)
\]

2D large eddy simulation of turbidity current, courtesy Brendon Hall, UCSB
Entrainment rate depends on flow Richardson number, thus on slope.

Most of drag is at upper boundary of flow due to instabilities.

\[E \approx \frac{1}{Ri} \]

\[Ri_0 = \frac{g' h \cos \theta}{U^2} \]

FORCE BALANCE: GRAVITY FLOW

\(\frac{d}{d_0} \)
...which helps explain the ‘unreasonable’ persistence of flows on low slopes

- Little drag
- Little entrainment

From Schwenk & Spieß, 2009
Generalizing geometry: approaches to scaling

10 km Indus Fan Kolla & Schwab, 1995

1 km Gulf of Mexico Slope Hackbarth Shew, 1994

100 m Outcrop Dykstra et al., 2011
Characteristic scales for normalisation

\[\Psi = \text{value of dependent variable at levee crest (maximum)} \]

\[\lambda = \text{horizontal length scale} \]
Non-dimensional thickness decay: slope channel levees

General expression for thickness decay: \(Y = \psi \left(\frac{X}{\lambda} \right)^{-0.63} \)

\(\Psi \) is vertical scaling parameter (thickness at levee crest)

\(\lambda \) is horizontal scaling parameter (channel centre to levee crest)

Data from Dykstra, Kneller & Milana, 2012
Conditioning to outcrop

Rosario Formation, Baja California, Mexico: Dip section
Composite levee profile from outcrop

Rosario Formation, Cretaceous, Baja California

Thickness = 17.823x^{-0.9615}
General expression for sand thickness decay: \(t_s = \varphi \left(\frac{X}{\lambda} \right)^{-1.773} \)

\(\varphi \) is vertical scaling parameter (sand thickness at levee crest)

\(\lambda \) is horizontal scaling parameter (channel center to levee crest)

Data from Kane, Kneller, Dykstra, Kassem, & McCaffrey, 2007
Normalised decay in sand thickness per bed

Normalised sand bed thickness decay

\[y = 0.9665x^{-1.773} \]

Data from Kane, Kneller, Dykstra, Kassem, & McCaffrey, 2007
\[T_x = f \left(\varphi_x \frac{u_s + E_0}{E_0} \right) \]

\[y = 6.18e^{0.1654x} \]

\[R^2 = 0.9992 \]
General expression for net-to-gross decay: $NTG = \nu \left(\frac{X}{\lambda} \right)^{-1.946}$

ν is vertical scaling parameter (NTG at levee crest)

λ is horizontal scaling parameter (channel center to levee crest)

Data from Kane, Kneller, Dykstra, Kassem, & McCaffrey, 2007
Decay in net-to-gross: a general model?

Normalised net to gross decay

\[y = 1.0455x^{-1.946} \]

\[\hat{N} \approx \hat{X}^{-2} \]

Data from Kane, Kneller, Dykstra, Kassem, & McCaffrey, 2007
Summary

- Levees are volumetrically highly significant sediment bodies
- They reveal much about characteristics of flows in channels
- Flow stratification is central to the behaviour of channelized flows and the formation of levees
- Fluid entrainment is key to levee geometry
- They commonly have predictable properties
- ...which allows reservoir characterization
Thank you!
Not all channel-associated thin beds are levee

Congo Fan. From Babonneau et al., 2002
Forming levees and terraces