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Abstract

The Lower Cretaceous Huitrin Formation of the Neuquén Basin (Argentina) consists of mixed clastic-carbonate-evaporite sediments
of shallow marine to continental settings. The unit is subdivided into three lithostratigraphic members Chorreado, Troncoso, and La
Tosca, all of which are hydrocarbon bearing in varying locations of the basin. This work presents the integrated 3D static and dynamic
reservoir characterization and modeling of the La Tosca unit. The main structure in the area is an East-verging basement anticline with
ElPichanal, PataMora, and PuestoMolina fields all being located on its western flank. Both a High Resolution Sequence Stratigraphic
model and a Discrete Fracture Network model, were built through the integration of seismic, core, well cuttings, borehole imaging and
log data, and validated by well tests and dynamic simulations. La Tosca depositional sequence consists of a third order transgressive-
regressive 30 m-thick cycle accumulated on a shallow carbonate platform. Main deposits comprise low- to high-energy subtidal to
intertidal facies including skeletal banks, ooid-skeletal shoals, peloidal platform interior, algal mats, and sabkha deposits. The facies
stacking pattern allows further subdivision of the unit into possible fourth and fifth order accommodation cycles. Fourth order cycles
show evident facies partitioning, with overall argillaceous-carbonates dominating transgressive hemicycles and clean carbonates
(ranging from skeletal and oolitic grainstones to algal-mat boundstones) dominating regressive hemicycles. Fifth order cycles also
show similar facies partitioning, with transgressive hemicycles bearing argillaceous limestones and regressive cycles characterized by
oomoldic and skeletal grainstones. Two types of fractures, diagenetic and tectonic, were identified, with diagenetic fractures showing
preferential occurrence within the regressive portions of the 5th order cycles mainly in oomoldic grainstones due to enhanced
cementation and in algal mats due to desiccation. Tectonic fractures are ubiquitous and their intensity is related to fault distance. We
propose a model of dual porosity where matrix acts as hydrocarbon storage and fractures provide production mechanism. The best
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matrix reservoir intervals occur within 5th order regressive hemicycles where permeability of oomoldic and algal mat facies is
enhanced by a network of centimeter-scale diagenetic fractures.
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Qutline of the presentation

= Objective and area of study
» Methodology for multidisciplinary reservoir characterization

= Qverview of the Neuquén Basin

= Structural characterization of the study area
= Core scale: fractures, facies and sedimentary cycles

= High Resolution Sequence Stratigraphy correlation

» Fracture and depositional models

= 3D reservoir model in Petre/

= Dynamic model

= Conclusions

Courtesy of Schwarz, E. et al. (CIG-La Plata)



Objective

Build predictive 3D static and dynamic model of La Tosca Unit (Huitrin
Formation) to characterize reservoir, production mechanisms and exploratory
play in the block of Canadon Amarillo

YPF, internal report, 2010
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Canadon Amarillo

YPF, internal report, 2010
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Uncertainties
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~ 40 wells
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Uncertainties

= Hydrocarbon Play

= Production mechanism
= Next Well

= Relationship with BSP



Methodology

for Multidisciplinary Reservoir Characterization
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Seismic

= Volume seismic interpretation

= Depth Conversion

= Geometries and Seismic Facies Mapping
= Integration with regional 3D and 2D lines
= Attribute Calculation

= Quantitative interpretation

Modelado de Fracturas
Deserpaon de raclurss en monas

TR

Structural geology

= Seismic Fault characterization

= Core-based fracture characterization
= Fracture-dynamic data calibration

= Discrete fracture modeling (DFN)

= Building of predictive fracture model

Sedimentology & HRSS

= Facies description

= Sedimentary cycles interpretation,
= Core-to-log calibration,

= HRSS correlation framework

= Spatial distribution of facies

= Diagenetic model

= Mechanical Stratigraphy

Petrophysics

= Petrophysical core-data analysis and correlation
= Porosity and permeability correlation
= Facies for K relation
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Neuquén Basin

Structural Development and Stratigraph

Neuquén Basin
Synthetic Stratigraphic Calurmn
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Study Area

Structural Setting
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Field Scale

Seismic Fault Interpretation

Detailed interpretation of faults and lineaments from seismic amplitude and attributes
Principal Faults E—NE y N-NW Major throw and displacement s
Secondary Faults NE-SW Minor throw and displacement
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Field Scale Y PF

FraCtU re CharaCterization in Cores (PM-14 PM-17 PM-23 PM-24 PM-25 PM-28 PM-42 BSPx1)
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Field Scale

FaCieS Definition in Cores (PM-14 PM-17 PM-23 PM-24 PM-25 PM-28 PM-42 PM-1001 BSPx1)
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Main deposits comprise low- to high-energy subtidal to intertidal facies including skeletal 698,20
banks, ooid-skeletal shoals, peloidal platform interior, algal mats and sabkha deposits

Argillaceous Limestones

\III‘HH‘IIII\IIII’HI

Algal Mats
PM 14
Argillaceous
Limestones
PM 23
<>

Oolitic Grainstone (oomoldic)
PM28

Oolitic Skeletal Grainstone
(oomoldic)
PM28

ol Fine-grained -
& Claystones-Marls peloidal grainstone Skeletal packstones
PM 23 PM14 PM 23



Field Scale YPEF

High Resolution Sequence Stratigraphy in Cores
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High Resolution

Sequence Stratigraphic Correlation

La Tosca depositional sequence: 3" order transgressive-regressive 30 m-thick
cycle accumulated on a shallow carbonate platform.
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grainstones to algal-mat boundstones) dominating regressive hemicycles. [ oA



Depositional model Canadon Amarillo )
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Depositional model Canadon Amarillo s~)
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Conceptual
Fracture Conceptual Model
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Core-based Reservoir Model (Petrel)

Lithology PM24




What was learned from dynamic simulation? Y PF

Fractures Matrix

» Historical production rates only achievable with fractures = Good matrix essential to recharge fracture networks
= Qil contact in fractures shallower than in matrix = Matrix is oil wet and basically un-depleted

» Fracture volumes typical 0.2-0.5% of GRV = Low connectivity between matrix and fractures

= OWC in the fracture system shallows moving from South to North

* Flow to wells is through fracture system

Matrix Saturation in comparatively High

Porosity layer. QOil bearing rock even on
the deeper west of the model.

Oil contact in fractures shallower than in
matrix.

For oil to be resident in the matrix
deeper than the fracture system, oil
must be preferentially attracted to the
matrix, hence the rock must be oil wet.

By history matching historical
production, the regions to the
deeper west were identified as
being water bearing
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Conclusions

Build predictive 3D static and dynamic model of La Tosca Unit (Huitrin Formation) to characterize reservoir,
production mechanisms and exploratory play in the block of Cafladon Amarillo

» La Tosca reservoir produces in the area of Pata Mora from
fractured shallow water carbonates (extensive tectonic and
diagenetic fracture network)

» Carbonate facies displaying secondary early diagenetic porosity
(mainly oomoldic pores and diseccation micro-cracks) provide HC to
the fracture network

> Best reservoir facies develop preferentially during the regressive
portion of 51" order depositional cycles, where the presence of
micro-fractures enhances matrix permeability.

» For new wells to be successful in the area, both fracture
and matrix components need to be encountered.

» All of the modeled geological concepts were tested by
dynamic simulations in an iterative procedure.
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