Mass-Transport Mechanisms and Resulting Deposits in a Deepwater Carbonate Debris Apron: Lower Cretaceous Tamabra Formation, Poza Rica Field Area, Mexico*

Robert Loucks¹, Charlie Kerans¹, and Xavier Janson¹

Search and Discovery Article #50674 (2012)**
Posted August 6, 2012

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Long Beach, California, USA, April 22-25, 2012

Abstract

A large carbonate debris apron developed on the west side of the Early Cretaceous Tuxpan Platform in water depths up to 1000 m. The transition from the shallow-water, reef-rimmed shelf to the debris apron was abrupt, with slope angles up to 35°. The apron extended more than 20 km from the shelf edge. Near the platform, the apron is approximately 400 m thick, and at the basinward-most edge of data control, it is approximately 150 m thick. Density flows and suspension processes were the dominant mechanisms of sedimentation. Accumulations with cobble- to boulder-sized carbonate lithoclasts were deposited by debris and mud flows. Matrix strength was the dominant grain-support mechanism, but pore pressure and buoyancy also contributed. Deposits of this type include clast-bearing lime mudstone and carbonate breccia, with matrix texture ranging from carbonate mud dominated to carbonate grain dominated. Coarse-grained skeletal-grain accumulations were deposited by concentrated and hyperconcentrated density flows. Dispersive pressure was the dominant grain-support mechanism, but buoyancy also contributed. Deposits include coarse-grained packstone to grainstone and rudstone. Grains are of shallow-water origin. Some of the fine-grained carbonate grainstones are associated with deposition by turbidity currents and show components of Bouma sequences. Turbulence was the dominant grain-support mechanism for these flows. Lithofacies group into packages that appear to correspond to stages of relative sea-level changes. Debris-flow deposits dominated during the transgressive to early highstand stages, and concentrated to hyperconcentrated density-flow deposits dominated during stillstand or early, slowly relative falling of sea level.

References

Goldhammer, R.K., and C.A. Johnson, 2001, Middle Jurassic-Upper Cretaceous paleogeographic evolution and sequence-stratigraphic framework of the Northwest Gulf of Mexico rim, *in* C. Bartolini, R.T. Buffler, and A. Cantu-Chapa, (eds.), The Western Gulf of Mexico basin; tectonics, sedimentary basins, and petroleum systems: AAPG Memoir 75, p. 45-81.

McFarlan, E., Jr., and L.S. Menes, 1991, Lower Cretaceous, in A. Salvador (ed.), Decade of North American Geology (DNAG): Geological Society of America (GSA), v. J, p. 181-204.

^{**}AAPG©2012 Serial rights given by author. For all other rights contact author directly.

¹Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX (bob.loucks@beg.utexas.edu)

McIlreath, I.A., and N.P. James, 1978, Facies models; 13, carbonate slopes: Geoscience Canada, v. 5/4, p. 189-199.

Mulder, T., and J. Alexander, 2001, The physical character of subaqueous sedimentary density flows and their deposits: Sedimentology, v. 48/2, p. 269-299.

Winker, C.D., and R.T. Buffler, 1988, Paleogeographic evolution of early deep-water Gulf of Mexico and margins, Jurassic to Middle Cretaceous (Comanchean): AAPG Bulletin, v. 72/3, p. 318-346.

2012 AAPG

Mass-Transport Mechanisms and Resulting Deposits in a Deepwater Carbonate Debris Apron: Lower Cretaceous Tamabra Formation, Poza Rica Field Area, Mexico

Robert Loucks, Charlie Kerans, and Xavier Janson

Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

Location

Goal

Thick Tamabra deepwater slope apron surrounds the Tuxpan Platform

Relate deepwater lithofacies to depositional processes

Stratigraphy

Stratigraphic Section

General Depositional Setting

Seismic Profile

SW

Poza Rica field

Western leeward margin of Tuxpan Platform

Conceptual Model Relating the Tuxpan Platform to Poza Rica Field

Stratigraphic Dip Section

Tamabra Fm

Depositional Lithofacies and Associated Depositional Processes

Density-Flow Classification

Mulder and Alexander (2001)

Depositional Settings

Pelagic

sedimentation

Pelagic muds

Transgression to early highstand (aggradation and oversteepening)

Tuxpan Platform bypass margin

to hyperconcentrated,

density-flow deposits

Margin and

slope erosion

Transport

Lowstand systems tracts will also be debris-flow prone

Pelagic muds

Highstand shedding

Debris flow Poza Rica slope Rock fall **Basin** Active carbonate Tuxpan Platform factory bypass margin Pelagic sedimentation Transport Poza Rica slope Rock fall Basin Amalgamated, concentrated

Model based on concept of McIlreath and James (1978)

Depositional Setting

Lowstand to early highstand (aggradation and oversteepening)

Tuxpan Platform bypass margin

Mud Flows

- Cohesive flow of mud and few clasts supported by matrix strength and pore pressure
- Less than 10% clasts

Mud-supported debris

Debris Flows

- Cohesive flow of mud and few clasts supported by matrix strength and pore pressure
- Greater than or equal to 15% clasts

Clast-supported debris flow

Matrix-free debris flow (stylobreccia)

Debris-Flow Matrix Types

Debris flow grain matrix (now dolomitized)

Debris Flows
Geobodies constructed from wireline logs using GOCAD

Depositional Setting

Highstand shedding

Tuxpan Platform bypass margin

Active carbonate factory

Pelagic muds

Amalgamated, concentrated to hyperconcentrated, density-flow deposits

Hyperconcentrated Flow

Homogenous hyperconcentrated flow

- Noncohesive flow of high sediment concentrations of 25% or more grains; promotes particle interaction
- Lacks sedimentary structures

Concentrated Flow

Upward-fining concentrated flow

- Noncohesive flow with high sediment concentrations between 9 and 25% grains; promotes particle interaction
- Shows vertical sediment sorting

Concentrated Flows

Several upward-fining, concentrated flows

Concentrated Flows

Upward-fining concentrated flow with coarse lag at base

Concentrated Flow

Basal coarse-grain lag of concentrated flow

Concentrated and Hyperconcentrated Flows

Geobodies constructed from wireline logs using GOCAD

Concentrated and hyperconcentrated-flow deposits

Turbidites

Dilute turbidites

- Noncohesive flow with sediment concentrations of 9% or less; turbulence main support mechanism
- Shows classicBouma sequences

Dominant grain support mechanism

Sediment concentration (volume %)

Turbidity flows

Concentrated density flows

Hyperconcentrated density flows

Debris and mud flows

Debris and mud flows

Lime-Mud Suspension Deposits

Globigerinidforaminifera

Calcispheres

Conclusions

- Tamabra carbonates of Poza Rica field were deposited in a deepwater debris apron
- Depositional processes were dominated by density flows and suspension sedimentation
- Breccias were deposited by debris flows
- Grainstones and grain-dominated packstones were deposited by concentrated and hyperconcentrated flows
- Deepwater deposits show an orderly response to relative sea-level changes