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Abstract

The Piceance Basin, northwest Colorado, is home to one of the most important basin-centered tight-gas accumulations in North American. A
wide range of geologic controls is responsible for the variation in gas production from the heterogeneous, low permeability reservoirs here, but
these controls are not well understood. Outcrop-to-subsurface stratigraphic correlation and detailed analysis of facies can elucidate potential
stratigraphic controls on geographic and stratigraphic zones with better gas production. The objectives of this project are to:(1) characterize the
specific types of fluvial and marine facies in the middle and upper Williams Fork Formation, (2) delineate the regional distribution of, and
transitions between these depositional facies, (3) determine mechanical properties in these facies that affect fractures and (4) disentangle
potential relationship between depositional and mechanical properties of the facies that may control gas production. Here, we present the first
phase of the project including preliminary regional sequence-stratigraphic framework for the middle and upper Williams Fork Formation. The
database focuses on outcrop data and consists of eight new detailed (10cm scale) measured sections, five published sections, six outcrop gamma-
ray profiles, detailed facies and channel geometry descriptions, 3D channel dimension analysis, paleocurrent data and well-logs that were used to
build regional cross-sections that identify regional stratigraphy. Thirty-one lithofacies were distinguished and grouped into six assemblages: (1)
high-sinuosity, meandering fluvial, (2) isolated, low-sinuosity anastomosed fluvial, (3) tidally influenced fluvial, (4) estuarine, (5) regressive
marine shoreline, and (6) transgressive marine shoreline barrier systems. The fluvial facies tend to be laterally extensive with variations in
channel type throughout the basin while marine and tidal facies show lateral discontinuity in the northwestern sections of the Basin. Remote
measurement of actual channel dimensions provides insight into potential controls on fracture development in various facies. Initial observations
suggest that the anastomosed fluvial and marine shoreline facies have the most fractures with varying intensity in the facies. Future work will
build on the array of detailed facies, sequence-stratigraphic context and fluvial channel dimensions to understand relationships between facies,
fractures, and production from tight-gas sandstones.
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1. Abstract 4. Methods

The Piceance basin, Northwest Colorado, is home to one of the most important basin-centered
tight-gas accumulations in North American. A wide range of geologic controls are responsible for ) )
variation in gas production from the heterogeneous, low permeability reserviors here, but these stratigraphic context

controls are not well understood. Out-crop-to-subsurface stratigraphic correlation and detailed

analysis of facies can elucidate potential stratigraphic controls on geographic nd stratigraphic 2. Assign potential mechanical properties to lithofacies based on fracture types, spacing and
zones with better gas production. the objectives of this project are to: (1) characterize the spe- abundance within each facies

cific types of fluvial and marine facies in the middle and upper Williams Fork Formation, (2) delin-
eate the regional distribution of, and transitions between these depositional facies, (3) determine
mechanical properties in these facies that affect fractures and (4) disentangle potential relation-
ships between depositional and mechanical properties of the facies that may control gas produc- grams

tion. Here, we present the first phase of the project including preliminary regional sequence-

stratigrahic framework for the middle and upper Williams Fork Formation. The database focuses 4. Petrological analysis of core samples to identify sequence-stratigraphic surfaces and
on outcrop data and consists of 8 new detailed (10cm scale) measured sections, 5 published sec- sediment provenance.

tions, 6 outcrop gamma-ray profiles, detailed facies and channel geometry descriptions, 3D chan-
nel dimension analysis, paleocurrent data and well-logs that were used to build regional cross-
sections that identify regional stratigraphy. Twenty-nine lithofacies were distinguished and
grouped into six assemblages: (1) high-sinuosity, meandering fluvial, (2) isolated, low-sinuosity log data.
anastomosed fluvial, (3) tidally influenced fluvial, (4) estuarine, (5) regressive marine shoreline,

and (6) transgressive marine shoreline barrier systems. The fluvial facies tend to be laterally ex-

tensive with variations in channel type throughout the basin while maarine and tidal facies show

lateral discontinuity in the northwestern sections of the Basin. Remote measurement of actual

channel dimensions provides insight into potenital controls on fracture development in variou

facies. Initial observations suggest that the anastomosed fluvial and marne shoreline facies have

the most fractures with varying intensity in the facies. Future work will build on the array of de-

tailed facies, sequence-stratigraphic context and fluvial channel dimenstions to understand rela- 5 . Prel | m | Nna ry Data Sets
tionshipds between facies, fractures, and production from tight-gas sandstones.
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Figure 2: Regional stratigraphy of northwestern Colorado and
southern Wyoming during the upper Campanian and
Masstrichtian times. Interval of study is highlighted. (Modified
from Cobban et al., 2006)

Figure 1: Map showing major structural features of the Piceance FI g u re 4:
Basin, northwestern Colorado. Green shows the outcrop distribu-

tion of the Upper Cretaceous Williams Fork. (Modified from Trudgill,
201 O) East

Piceance Basin-Centered Gas Model- Maximum Burial (approx. 15,00 ft)

Figure 7: Gas producing well from
Rio Blanco County, Piceance Basin,
Colorado. Normalized digital Gamma
Ray data is displayed with Geoshad-
ing to display the contrast between
sandstones, shales, and coals of the
lower Williams Fork.

Figure 2:
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Figure 2: Stratigraphic column of the southern Uinta and Piceance

Basins with pertinent stratigraphic units and their corresponding &

nomenclature. The Utah/Colorado state line corresponds with a name

change from the middle and upper Williams Fork Formation to the

Tuscher Formation. Interval of study is highlighted. (Modified from

Hettinger and Kirschbaum, 2002) Figure 4: Schematic diagram of the Piceance Basin centered gas model.
Maximum burial (approx 15,000 ft) allows for gas generation within the
lles and lower Williams Fork Formation. Fracturing within the Williams
Fork Formation and gas expansion allows for movement of natural gas to
sandstones within the middle and upper Williams Fork. (Modified from
Cumella, 2008)

Fracturing and gas expansion due to overpressuring by gas
generation from coals- fracutres propagate in maximum
horizontal stress direction.

Figure 7: Map of the Piceance Basin. Mesaverde Outcrops are displayed in green and wells
within the data base are posted. Wells with digital data are highlighted along with wells that
were used to create a sequence-stratigraphic framework within the lower Williams Fork Forma-
tion.
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9. Actual Channel Dimensions- Workflow

Measuring
channel dimen-
sions in the field
can only give us
an apparent size,
however using
paleocurrents
and a variety of
programsactual
dimensions can
be obtained

mensions can be determined.

Using a mapping software, such as GlobalMapper, and high resolution DEM and aerial photos it is possible to pick out individual channel bodies or channel complexes. This allows us to determine
the apparent channel dimensions, much like in the field. When combined with elevation data, the channel boundries can be placed into a structural software package and the actual channel di-

Bringing the apparent channel dimensions and elevation data into a structural modeling program such as Move allows us to determine the actual channel dimensions before erosion. By apply-
ing the paleocurrents measured in the field it is possible to project the channels onto a section that is perpendicular to flow. This projection allows us to determine the actual channel dimensions
instead of the apparent dimensions that are normally measured in the field.

10. Conclusions

*Detailed litofacies analysis aids identification of high frequency flooding sur-
faces that enhance correlation.

*Study supports the suggestion that the Williams Fork Formation changes from
meandering fluvial systems to anastomosed systems.

*Fluvial facies are laterally extensice with variations in channel types while
marine and tidal facies show lateral discontinuity in the northwestern sections
of the Piceance Basin.

*Thinning in the middle and upper Williams Fork possible due to uplift of the
Uinta Mountains and movement on the Uncomprage Uplift.

*Initial observations suggest the anastomosed fluvial, meandering fluvial and
marine shoreline facies have the most fractures with varying intensity in the

facies.

* Determining actual channel dimensions gives us a better understanding of
the size of reserviors and their extent in the subsurface.

12. References

11. Future Work

*Continue measuring stratigraphic profile sections, along with obtaining outcrop gramma-ray (GR) data, in the northwest, south-
west, and southeast margins of the Piceance Basin.
6-9 new sections

*Continue to combine stratigraphic profiles with GR to recognize key sedimentary packages and bounding surfaces from out-
crop to correlate into the basin using PETRA.

*Obtain fracture measurments in the field including; fracture type, spacing, and orientation.
*Petrographic analysis from Core to determaine Provenance and reservior heterogenity.
*Obtain channel dimensions throughout the Piceance Basin using remote software workflow presented above.

*Combine depositional isopach maps and production data to determain relationships between depositonal zones and facies to
production maps to determine if zones we believe to be productive are extensive throughout the basin.

*Combine depositional isopach maps and and fracture occurence maps to determine mechanical properties that control gas pro-
duction.
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