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Abstract 

 
The Barnett Shale is a profitable gas field, but at current recovery rates, only 10-15% of the estimated gas-in-place will be extracted. Gas recovery in 
this tight formation is limited by diffusive transport from the matrix storage to the stimulated fracture network. However, despite the central role of 
diffusion, there are no systematic studies examining the measurements and effects of pore structure on diffusion of the Barnett Shale. We present 
results of a study of pore structure (pore connectivity, tortuosity, and pore-size distribution) in the Barnett Shale. Pore-size distribution was measured 
by both mercury intrusion porosimetry (MIP) and vapor absorption porosimetry. The pores are predominantly in the nm size range (with a measured 
medium pore diameter of 6.5 nm), but pore size is not the major contributor to low gas recovery. The low gas diffusion appears to be caused by low 
pore connectivity in the Barnett Shale. This was established by imbibition tests, a relatively easy screening technique for determining whether a rock 
sample has low connectivity. Where gravity effects are negligible, water imbibition into a hydrophilic porous medium with well-connected pore spaces 
leads to mass uptake proportional to time 0.5. With sparsely connected pores, an imbibition exponent of 0.26 is obtained, as we have consistently 
observed for the shale samples. We also directly measured chemical diffusion in the Barnett shale using a suite of tracers, followed by chemical 
mapping using laser ablation-ICP-MS. Tortuosity calculated from both mercury intrusion porosimetry and saturated diffusion tests is quite low, as 
expected from the low pore connectivity. 
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Introduction 

 Barnett shale: located in the Fort Worth Basin of north-central Texas 

 A major gas-producing field after hydraulic fracturing  

 Current gas recovery only 8-15% of the estimated gas in place (Curtis, 2002) 

 Low gas diffusion & transport likely due to nano-sized pores and low pore connectivity 

 Multiple approaches used to evaluate pore structure and connectivity in tight shale  

Funding for this project is provided by RPSEA through the “Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources” program authorized by the U.S. Energy Policy Act of 2005.  RPSEA (www.rpsea.org)  is a nonprofit corporation whose mission is to provide a stew-

ardship role in ensuring the focused research, development and deployment of safe and environmentally responsible technology that can effectively deliver hydrocarbons from domestic resources to the citizens of the United States.  RPSEA, operating as a consortium of premier U.S. energy re-

search universities, industry, and independent research organizations, manages the program under a contract with the U.S. Department of Energy’s National Energy Technology Laboratory.  

Unsaturated Transport–Sorption (Imbibition) Approach
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Porosity Measurement and Saturated Sample Preparation 
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Imbibition (analog to diffusion) to Probe Pore Connectivity 
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Depth (replicates)
Porosity 

(%)

Bulk density 

(g/cm
3
)

Particle 

density 

(g/cm
3
)

7,109 ft (2,167 m) 

(N=5)
2.77±0.98 2.31±0.04 2.38±0.04

7,136 ft (2,175 m) 

(N=6)
1.27±0.24 2.52±0.06 2.56±0.07

7,169 ft (2,185 m) 

(N=6)
3.11±0.88 2.40±0.06 2.47±0.07

7,199 ft (2,194 m) 

(N=6)
3.77±1.21 2.25±0.05 2.34±0.06

7,219 ft (2,200 m) 

(N=6)
2.67±1.15 2.40±0.07 2.47±0.08

Measured Physical Properties of Barnett Shale

Low Pore-Connectivity of Shale Samples
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Saturated diffusion tests of Barnett shale 

samples (7,136 ft) in ~1 L tracer reservoir
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Pore-Size Distribution from Vapor Absorption
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Mercury Intrusion Porosimetry Results
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 D : equivalent pore-throat diameter (cm)

 W : the Washburn constant (0.145)

 α : interfacial tension (485 dynes/cm) for Hg

 θ : contact angle (130–140
o
) for Hg

 P
c 
: capillary pressure (micro bar)

Washburn Eq. (1921)
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Tracer Diffusion in Saturated Barnett Shale Vapor Absorption Porosimetry 

Focused Ion Beam/SEM Imaging of nm-Sized Shale Pores 

Summary 

 Permeability in sub nano-darcy (10
-21 

m
2

) (MIP results) 

 Medium pore throat in sub-nm ranges (MIP,  N2 sorption & vapor ab-

sorption) 

 Nanometer-sized pores are poorly connected (imbibition) 
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Loucks et 

al. (2009)

Loucks, R. G., R. M. Reed, S. C. Ruppel and D. M. Jarvie (2009). Morphology, genesis, and distribution of nanometer-scale pores in 

siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research 79(11-12): 848-861.
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Diffusion Profiles for Nonsorbing and Sorbing Tracers

Curtis 

(2002)

Bowker 

(2007)

Gale et 

al. (2007)

Grieser 

et al 

(2006)

Hill et 

al. 

(2007)

Sigal and 

Qin 

(2008)

Zhao et 

al. (2007)

Porosity (%) 4.4 6 5.52±0.28 6 4–8 3.8–6.0

Permeability (μd) 0.07–5 20 0.01–0.6 0.15–2.5

TOC by weight (%) 4.5 4.5 3.5–4.5

Free gas (%) 55

Sorbed gas (%) 45

Water saturation 

(%)

43 25 28.9±7.2

Hydrogeological Properties of the Barnett Shale

Sample Sample dimension Height/width Imbibition slope

7,109 ft

1.33 cm L×1.76 cm W ×1.43 cm H 

(Vertical)
0.93 0.214±0.059 (N=3)

1.76 cm L×1.72 cm W ×1.32 cm H 

(Horizontal)

0.76 0.291±0.027 (N=3)

7,136 ft

1.38 cm L×1.71 cm W ×1.72 cm H 

(Vertical)

1.12 0.269±0.0045 (N=3)

1.73 cm L×1.73 cm W ×1.21 cm H 

(Horizontal)
0.70 0.216±0.040 (N=3)

7,169 ft

1.35 cm L×1.79 cm W ×1.81 cm H 

(Vertical)
1.16 0.273±0.050 (N=3)

1.24 cm L×1.78 cm W ×1.32 cm H 

(Horizontal)
0.87 0.353±0.001 (N=2)

7,199 ft

1.24 cm L×1.74 cm W ×1.67 cm H 

(Vertical)
1.12 0.284±0.062 (N=3)

1.74 cm L×1.72 cm W × 1.26 cm H 

(Horizontal)
0.67

0.283

(N=1)

7,219 ft

1.37 cm L×1.74 cm W × 1.95 cm H 

(Vertical)
1.25

0.306±0.019

(N=3)

1.69 cm L×1.71 cm W ×1.36 cm H 

(Horizontal)
0.80 0.264±0.046 (N=3)

Imbibition Results for Five Barnett Shale Samples

Vertical: transverse to the horizontal bedding; Horizontal: parallel to the bedding.
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MIP Results of Five Barnett Shales

Sample 

depth

Total

pore 

area 

(cm2/g)

Porosity

(%)

Bulk 

density 

(g/cm
3
)

Particle 

(skeletal) 

density 

(g/cm3)

Median 

pore 

diameter 

(μm)

Permeability

(mdarcy)
Tortuosity

7,109’ 10.5 4.32 2.47 2.58 0.0062 4.24E-06 --

7,136’ 1.05 2.63 2.66 1.22E-06 41,877

7,169’ 5.31 2.88 2.56 2.64 0.0089 2.61E-06 27,325

7,199’ 14.8 5.96 2.38 2.53 0.0065 6.93E-06 8,749

7,219’ 5.58 2.61 2.51 2.57 0.0075 2.57E-06 21,389

Tortuosity: estimated from limited data points due to many pores in shales are smaller than 3 nm (MIP limit)

BET N2 Adsorption/Desorption 

Drying and Wetting Curves with RH Chamber Methods

Drying

NaOH CH3COOK K2CO3 NaNO2 NaCl KCl Na2SO4 CaSO4 H2O

Wetting

RH (%) 6.96 22.9 43.2 66 75.4 84.8 93 98 99

Pc (MPa) 363 202 114 56.5 38.5 22.6 9.88 3.52 1.37

Diameter 
of 

meniscus 
curvature 

(nm)

0.80 1.45 2.54 5.13 7.55 12.9 29.4 106 212

Nitrogen 

adsorption/

desorption 

measurements

TriStar II 

(Micrometrics)

Shoichiro Hamamoto

(Saitama University, Japan) 45

Pore Size Distribution: MIP vs. N
2

sorption
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MIP (7,199 ft; ~ 10 mm chip)

66-128: a mixture of powder sample 

(<75 µm) from 7,164 to 7,224 ft

Barnett shale samples

0.0291 cm3/g (BET) vs. 0.0251 cm3/g 

(MIP); 16% pores between 1.7 - 3.0 nm 
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