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Abstract 

 

The term “mechanical stratigraphy” refers to the association of rock mechanical and other properties with the different stratigraphic layers in 

a given formation. Although not a new concept, the advent of shale reservoir development has caused a new focus to be placed on the study 

of such properties and their associated importance. As is frequently stated, “all shales are not the same”, and mechanical stratigraphy is one 

area of study that can help to differentiate between potentially productive shale systems and those that are not as promising. 

 

As noted by Hill et al. (2008), brittleness is one element necessary for a commercial shale play. The brittleness of a formation can be 

indicated by the relationship of Young’s modulus to Poisson’s ratio. In formations that are being hydraulically fractured, not only can the 

brittleness provide an indication of the potential for fracturing, but it can also indicate if fracture conductivity might suffer due to embedment. 

Although fracture conductivity is critical in all formations, it is especially so in liquid-rich shale systems where fractures must reach far into 

the reservoir while providing sufficient conductivity for a long period of time. 

 

This presentation shows the impact that mechanical stratigraphy can have on the growth of hydraulic fractures in different reservoir types. 

Such results are then used to demonstrate considerations that should be taken during the design of hydraulic fracturing treatments to optimize 

production rates and recoveries. Throughout the presentation, emphasis is placed on the fact that although shale systems can appear to be 

fairly homogeneous across large areal extents, subtle differences within the intervals can have a large effect on stimulation effectiveness. 
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Presentation Outline 

• Introduction 
– Mechanical stratigraphy and its importance 

• Examples 
– Tight gas 
– Woodford 
– Misc shale systems 

• Implications in horizontal wells 
• Conclusions 



Mechanical Stratigraphy 

• “Mechanical stratigraphy refers to 
the subdivision of rock into 
discrete intervals (mechanical 
units) according to the structures 
found in those intervals.” 

      Gross, 2003 



Introduction 

• Mechanical stratigraphy not a new concept 
but shale plays have renewed the interest 
– Assist in targeting zones for completion 

• “Shales” have complex and varying 
mineralogies 

• Influence of mineral components and TOC 
on rock mechanical properties and 
subsequently hydraulic fracturing not fully 
understood 



Elements necessary for productive, 
commercial shale gas play (Hill et al., 2008) 

• Organic richness 
• Maturation 
• Gas-in-place 
• Free gas 
• Pressure 
• Brittleness 
• Mineralogy 
• Thickness 
• Permeability 
• Natural fractures 



What is “brittleness”? 

• Various mechanical property 
definitions used by different 
disciplines across the industry 
– “Brittleness” 
– “Hardness” 
– “Elasticity” 
– “Fracability” 

• Official definition important - no? 
Impact – yes? 



Brittle Rocks 

Ductile Rocks 

Definition of Brittleness Based on 
 E and ν 

YM_BRIT = ((YMS_C - 1)/(8- 1)) * 100   
PR_BRIT = (( PR_C- 0.4)/ (0.15 - 0.4)) * 100 
BRIT = (YM_BRIT + PR_BRIT) / 2 

From SPE 115258 



Proposed Brittleness Indicators 

• Mike Mullen (2008) 
 
 

• Dan Jarvie (2007) 
 
 

• Fred Wang (2008) 
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Estimation of Minimum In-Situ 
Stress Profile 

Pc = closure pressure, psi 
ν = Poisson’s Ratio 
Pob = Overburden Pressure 
αv = vertical Biot’s 
poroelastic constant 
αh = horizontal Biot’s 
poroelastic constant 

 
 

Pp = Pore Pressure 
εx = regional horizontal 
strain, microstrains 
E = Young’s Modulus, 
million psi 
σt = regional horizontal 
tectonic stress 
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E, ν and Hydraulic Fracturing 

• Stress profiles 
• Fracture width 

– Proppant concentration 
– Fracture conductivity 

• Embedment 



Some Examples of Impact 

• Tight gas 
• Woodford 
• Misc shale systems 

 



Layer-cake vs. Detailed Reservoir 

Layer-cake Geometry Complex Fluvial Geometry 

Well F Well F 

North-South Azimuth 

From SPE 140413 



Modeled Hydraulic Fractures 

Proppant concentration distribution in the “layer-cake” reservoir configuration. 
Effective lengths are shown with the red vertical lines. The perforations are shown 
as short black lines. A color-coded overlay of the facies is employed to better 
understand the fracture growth. 

From SPE 140413 



Woodford Data Set 

• Upper Devonian Woodford 
• Permian Basin 
• Reliance Triple Crown (RTC) #1 

– 260 ft core 
– 166 samples analyzed for lithological, 

mineralogical, TOC content, and geochemistry 
– Acoustic rock mechanical properties acquired 

on core and from dipole sonic log 

• Five lithofacies identified 
– Massive carbonate, black shale, siltstone, grey 

mudstone, and laminated carbonate 



Location of subject well, RTC #1 (Permian Basin) 



Average TOC and Clay Content from RTC #1 

Woodford 
Zone 

Core Depth 
(ft) TOC (wt%) 

Clay 
Content 

(wt%) 

Upper 12759.75-
12786.75 3.8 6.33 

Middle 12786.75-
12980.40 5.4 13.27 

Lower 

12980.40-
13038.68 4.6 28.00 

13038.68-
13097.98 2.9 4.40 
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Statistical Analysis 

• Consisted of 36 different components 
– Density, TOC, Vs, Vp, E, ν, shear modulus, bulk 

modulus, percentage of eleven mineral types, 
and 17 geochemical components 

– 72 samples had complete sets of the 166 samples 

• Factor analysis 
• Hierarchical cluster analysis 
• Multivariate regression 

 



Cluster Characteristics 

Cluster # Samples
Samples Location 

in the           
Woodford

Mechanical Properties         
Signatures

Mineralogy and/or 
TOC Signatures

1 5 2 Upper/1 Middle/                 
2 Lower

High E and K.                   
Moderate G and v Moderate TOC

2 2 2 Upper Relatively high G High apatite

3 1 1 Upper High E, G and K.                 
Moderate v High apatite

4 54 1 Upper/48 Middle/              
5 Lower

Moderate E, G, K                      
and v

High Quartz and fairly                        
high TOC

5 1 1 Middle High G and low v High dolomite
6 1 1 Middle High K and low v High TOC
7 1 1 Upper Low E and G High clay and low TOC

8 5 5 Lower Relatively high v                        
and low G High clay and low TOC

9 1 1 Upper Relatively high v,                          
low G and K High clay and low TOC

10 1 1 Upper High E, G and K Very high dolomite and                  
very low TOC

v = Poisson's ratio

E = Young's modulus
G = Shear modulus
K = Bulk modulus



Young’s Modulus vs. Poisson’s Ratio 
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Hydraulic Fracture Modeling 

• 39 different designs using commercial 
3D frac model 

• Treated Upper, Middle, and Lower 
zones individually and in combination 

• Slickwater, gelled (20# guar), and 
hybrid systems used 

• Sand and artificial proppants used 



Slickwater Treatment 
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Shales - Embedment 

• Do fracturing fluids weaken the shale 
rock frame 

• Associated embedment 
– Bakken (including the Middle and the Lower 

Bakken) 
– Barnett 
– Eagle Ford  
– Haynesville   

 



Process 

• Measure Young’s modulus (E) for the samples 
using  nanoindentation; 

• Apply fracturing fluid to samples then re-
measure Young’s modulus;  

• QEMSCAN to quantify mineralogy and 
porosity; 

• TOC measurements 
• Apply proppants under uniaxial stress; and, 
• Observe embedment using scanning acoustic 

microscope. 
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Young's Modulus Before Exposure to Fracturing Fluids, GPa 

Lower Bakken
Middle Bakken
Barnett
Eagle Ford
Haynesville

"Soft"  
minerals 

"Hard" minerals 



Scanning Acoustic Microscope 

Prasad, 2009 



Eagle Ford/ No Stress 



Eagle Ford/ No Stress 



Eagle Ford/Under stress 



I2  ˃ I1 
E2 ˃ E1 



Summary of Results 

Test Conducted Properties Lower 
Bakken 

Middle 
Bakken Barnett Eagle Ford Haynesville 

Nanoindentation 

Young's 
Modulus 

reduction (%) 
22 52 32 70 6 

Conductivity 
loss due to E 

reduction 
5 14 8 39 1.4 

TOC 

TOC (%) 17.18 0.45 4.4 4.99 3.53 

TOC Type II oil prone 
oil window 

IV inert 
stained/conta

minated 

III gas prone 
condensate 

wet gas 

III Gas prone 
Condensate 
wet gas/dry 

gas 

IV inert 
stained/ 

contaminated 

TOC Maturity Mature Immature Mature Mature Immature 

QEMSCAN 

Porosity (%) 16 0.8 5.4 4.8 9.7 
Illite-smectite 

(%) 47 4 21 8 57 

Quartz (%) 21 11 59 3 28 
Calcite (%) 0 77 12 77 2 
Pyrite (%) 13 1 2 6 5 

Dolomite (%) 10 4 1 2 0 



Implications in Horizontal Wells 

• Stage spacing 
• Perforation placement 



Implications in Horizontal Wells 

• Short-term vs. long-term 
production 
 

• Placement of wellbore and 
location of treatments critical 
– Just because we can, doesn’t mean we 

should… 



Conclusions 

• Effects of: 
– Growth 
– Embedment 

• Geology/mechanical stratigraphy 
– Can’t change it 
– Don’t ignore it 
– Use it to your advantage as you can 

• Optimize 
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