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Abstract

From mid-2012, the Sarawak Gas Asset will comprise 20 producing fields accounting for more than 40 Tcf of gas initially in place and
supplying more than four Bscf/d to the Malaysian LNG plant at Bintulu. A tool for performing quick and timely health checks of reservoir
models is therefore invaluable for providing confidence in model-based volumetric estimates, production forecasting and optimum gas
supply planning. In Shell, a synthetic seismic workflow is used for validating carbonate reservoir models against seismic data, effectively
“closing the loop” in the integrated reservoir modeling process, which originates with the interpretation of the seismic data.

The underlying mechanics of the process is to convert the reservoir properties in the model (primarily porosity) to acoustic rock properties
(Vp, Vs, and Density), based on water-wet rock property regressions derived from the available well data. Gassman fluid substitution is then
used to convert the predicted acoustic properties to their gas-saturated state. As an initial QC of the model, the predictions of acoustic
properties are compared to the measured acoustic logs at the well locations. Synthetics based on these models are subsequently generated by
convolving the Al property model with a seismic wavelet extracted from the seismic dataset and compared back to the actual seismic data.

Developing a workflow for validating Sarawak carbonate reservoir models against seismic has come with many benefits. Field examples
exist where the technique has been applied as an effective check for internal reservoir architecture. This extends to scrutiny of the lateral and
vertical porosity variability away from wells. Furthermore, it is used for constraining the modeling and porosity enhancement that is
assigned to karstified networks and in many cases, as a tool for testing dynamic simulations through the incorporation of 4D repeat seismic
acquisition results. Given that seismic acoustic impedance drives both porosity and permeability models in the Sarawak carbonate reservoirs,
it ultimately impacts the predicted dynamic behavior of these reservoirs. As an early detection tool, this workflow can alert subsurface teams
to issues inherent in their interpretation, depth conversion and modeling, which can be addressed in a timely manner to avoid surprises with
respect to volumetric estimates, forecasting and well planning, resulting in more efficient management of the gas reserves of offshore
Sarawak.
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OUTLINE

B SARAWAK CARBONATE PLAY:
m Introduction to Asset Environment

m Regional Geological Context.

m METHOD:
m Generalized Modeling Workflow for Sarawak Carbonate fields.
m Synthetic Seismic Validation Method (SSV).

m CASE HISTORIES:
m Examples for validating models from Sarawak carbonate fields:
B Reservoir architecture & vertical porosity variations.
m Lateral porosity variations.
m Karst mapping and property assignment.

m Dynamic simulation results with 4D seismic.



SARAWAK ASSET OVERVIEW
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Accurate models required for forecasting
and supply planning purposes.

Workflows have been embedded to ensure
adequate QC against seismic data.

25 producing fields (19 Shell operated).

|

m Total supply = approx 4Bcf/d to MLNG.
| Range of field types, size and maturity.

m Range of Fluids — Mercury, H2S and Co2.

m Complex Integrated Production System.
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REGIONAL CONTEXT — Central Luconia
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KEY MODELING THEMES:

m Miocene Carbonate Reef growth initiated on fault bounded
highs.
Reservoir development and architecture defined by interplay
between eustatic sea-level changes and basement tectonic

episodes.




REGIONAL CONTEXT — Central Luconia
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KEY MODELING THEMES:
m MFS can be mapped an a regional scale, ’ ‘
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SUBSURFACE/DEVELOPMENT UNCERTAINTIES:
m Porosity Distribution (Horizontal/Vertical).

Water Breakthrough Timing/Aquifer Behavior.

|
m Karstification.
m Variable seismic data quality.




GENERALISED WORKFLOW (STATIC MODEL)
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GENERALISED WORKFLOW (SSV)
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1D & 2D QC TOOLS — SHELL PLUG-IN
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use Vpsat from the model
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3D QC TOOLS - SHELL PLUG-IN
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FIELD A - INTERNAL ZONE ARCHITECTURE
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Actual seismic (coloured) vs. synthetic seismic (wiggles) TWT
Red line = interpretation horizon ; White line = model horizon

m Discrepancies could be due to either:
m Incorrect framework model
m Incorrect porosity model

m Incorrect Porosity-Vp regression.
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Synthetic versus actual time thickness ratio
between Top Carbonate & H1.

Red = modelled time thickness

< actual time thickness

m Incorrect framework model will impact GIIP estimates and dynamic behaviour of baffle

zones eftc.




FIELD B - INTERNAL ZONE ARCHITECTURE  YPreeveLopuent

Black: modeled TWT
Blue: GOC&OWC TWT
Yellow: orig horizon TWT  ||-"47%7
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m Error with original velocity model has been
detected.

m The error highlighted by difference in
modelled and original marker (Z5) marking
top of a field wide tight layer.

m Positioning of this layering scheme with
respect to OWC critical to assessment of
development concept.




‘ PLANNED PRODUCTION WELL

Note: Black= Static Model,
Colour=Input.

Note: Black= Static Model,
Colour=Input.

m The errors have been identified and corrected. This leads to improved model based predictions
for well performance.

m Better risk mitigation, optimal well placement and development concept screening.



FIELD C: LAYERING ARCHITECTURE AND UPSCALING *
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POROSITY PREDICTION IN SARAWAK CARBONATES
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Sarawak carbonate fields.
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To predict lateral porosity variations, we
assume a relationship between porosity
& Al.

This relationship is poor at the log scale
and core scale measurement, evidence
suggests that it is reasonably good at the
seismic scale.

Therefore seismic Al data is used as a
secondary variable to constrain porosity
in our models.

UNCERTAINTIES:

B Al Processing (LFM and ULFM).

B Absolute vs. Relative Al Data.

m Seismic Data Quality.

m Impact of gridding algorithm and
geostatistical parameters.



FIELD C: LATERAL POROSITY VARIATIONS IN MODELS %
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m Overall match between synthetic and actual RMS amplitudes trends are reasonable. What constitutes a
good match is field specific, dependent of various factors.

m Workflow highlights potential uncertainty in porosity prediction away from well control, impacting infill well
target analysis. Model QC workflows are valuable INTEGRATION tools.



MODEL THEME: VALIDATING KARST PROPERTIES
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Location of digenetic KARST facies are well
constrained on seismic. BUT:

B What are the correct dimensions to model?

m  Whatare the correct properties to assign?




FIELD D - VALIDATING KARST PROPERTIES
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m Using an iterative approach, the most optimal property is assigned that gives closest match to actual
seismic character associated with a diagenetic karst facies.



FIELD E: DYNAMIC SIMULATION COMPARED TO 4D SIGNAL
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m Timing of water breakthrough is a key
challenge and subsurface uncertainty.

m Time-step Saturation Models can be

compared to equivalent Time-Lapse
Seismic volumes.

m The % Al change from the models are
compared to acquired 4D signal

(difference).

m Mismatch between Al difference vs 4D
signal indicates where water movement is
not properly constrained.

Sw 2008 model




FILTERING FOR DETECTABLE 4D SIGNAL — SARAWAK HISTORY
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FILTERING FOR DETECTABLE 4D SIGNAL — SARAWAK HISTORY
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FIELD E: DYNAMIC SIMULATION COMPARED TO 4D SIGNAL

Surface attribute
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m Enhanced use of 4D seismic in dynamic simulations
and constraining of water breakthrough predictions.

m 4D data points towards “patchy” bottom drive
aquifer influx.

m Previous dynamic model predicts a general flank
drive driven water encroachment.

m A2% AAl and minimum height above contact (33ft)
filter is applied to the synthetic Al model, to match
minimum 4D signal that can be detected.

m Areas of mis-match between 4D signal and
modeled Al change are easily highlighted.



FIELD E: COMPARISON BETWEEN PRIOR AND UPDATED MODELS
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CONCLUSIONS

m Synthetic Seismic Validation:

m Encourages Geo-Modellers to ‘think seismic’ and Geophysicists to ‘think
geology’.

m Early Detection Tool alerting subsurface teams to issues in modeling
approach/strategy and provides easy tool for Iterative Model Updating.

m Tool for integration between disciplines. Shorter modelling cycle times.

m Key Leanings:

m The technique promotes a better understanding of the relevance of seismic
amplitude variations on a subsurface model.

m Internal reservoir architecture & layer thickness can be quickly checked through
to upscaled model.

m Use of Al data as secondary variable to constrain porosity distribution in models
produces good match to seismic amplitudes.

m Porosity enhancement in features, which are interpreted as karst, produces
reasonable match to seismic data character.

B 4D synthetic seismic validations of dynamic simulations against available 4D
seismic data can be used as an additional history matching parameter.



FIELD EXAMPLES courtesy of:

m FIELD A by Khairun Niza Baharaldin

m FIELD B by Kenneth Boey

m FIELD C by Paul Hague

m FIELD D by Yee Shuh Wen

m FIELD E by Alexander David Kayes
PLUG, for further information please attend:

m Yee Shuh Wen paper on “A decade of 4D seismic monitoring of carbonate reservoirs in offshore Sarawak,
Malaysia”, Wednesday 19" September.





