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Abstract

Deep petroleum systems are little understood components of California’s sedimentary basins. Condensates, high API gravity
admixtures to black oils, and thermogenic gas represent new and difficult plays for exploration. Our work is aimed at recognizing
these systems, their source rocks, their thermal history and migration. It involves surveying extensive sample libraries for the
occurrence of ultra-stable markers (diamondoids, simple aromatics, triaromatic steroids, etc.) in cracked or mixed oil and mapping out
their contributions to known reservoirs. Previous work in California focused on less stable molecular markers (i.e. biomarkers) and
was blind to these high maturity contributions.

Ultra-stable components can be fingerprinted and correlated with petroleum source rocks using higher diamondoid distributions,
diamondoid isotopes, aromatic isotopes, and light hydrocarbon isotopes. Newly defined petroleum systems can be modeled and
potential hydrocarbon contributions considered during exploration.

A growing database of more than 100 petroleum samples from the San Joaquin, Salinas, Santa Barbara, Los Angeles, and the Eel
River basins are being collected. High maturity contributions have already been recognized in many San Joaquin, Santa Barbara, and
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Eel River fields as part of this work. Preliminary fingerprinting of ultra-stable markers indicates deep highly-cracked sources from the
Cretaceous, Eocene, and Miocene in California's sedimentary basins. Most deep contributions are found as mixes with black oils
where they dominate the distribution of ultra-stable markers but contribute little to the distribution of biomarkers. Unique fingerprints
for both biomarkers and ultra-stable markers helps point toward the source rock for these independent components and provide a fuller
view of petroleum systems.
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High-Maturity Petroleum Systems

Fundamental to modeling of petroleum systems is determining that the
correct source (and all potential sources) are being modeled.

Ultra-stable molecular markers provide us with molecular and isotopic
fingerprints to source high maturity liquids -- alone or in mixtures

A growing knowledge of these compounds, their genesis, and destruction may
provide more detailed information concerning both source and evolution of
petroleum systems.

Understanding high-maturity systems sheds light on Unidentified
Sources, Causes for API variability, GOR, and sources of
thermogenic gas.



California Deep Source Study:

Focusing on Accessible Produced Oil Samples and Seeps --
a Joint USGS / Stanford




Visualizing Santa Barbara Seeps with Bubble Streams
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Santa Barbara Basin -- Hydrocarbon Induced Topography

from Keller et al., 2007



Most widely used source parameters have
limited utility at high maturity
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Today’s Focus: Diamondoids

Conservative Compounds Present Throughout Qil and Gas Windows
eQuantitative Cracking Estimates
eldentification of “Stealth” Condensate Contributions
eCorrelations across the Broadest Possible Range of Maturities
eVapor phase transport and evaporative fractionation
eThermochemical Sulfate Reduction studies

*Tight Shales: % Cracking, Gas Pressure, Oil Properties, Diffusive Gas Loss
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|dentifying mixed petroleum samples based on
quantitative diamondoid analysis
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Biomarker Concentration

Artificial Cracking of a Kreyenhagen-Sourced Ol
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Biomarker Concentration

Approximately One Third of California Qils

Studied show Evidence of Cracking
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FID response
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Pure diamondoid fraction isolated from crude oil
(useful for isotope analysis or
higher diamondoid quantification)
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6'3C %o of adamantanes

|dentification of mixed oils based
on diamondoid isotopes
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Diamondoid Isotopes are expected to mirror bulk isotopes of
the high-maturity contribution in mixtures
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d'3C adamantanes

Diamondoid isotopes:
Distinguishing Cretaceous, Eocene, and Miocene Source Rocks

& & 2 & & o o & & £ o & & & & & & & &
z‘-ﬂ ra-‘-@ @&f fa&é\ m‘-@ &@ "‘é\ @d@? ré{@ i\é‘e} \?‘@Q m&@ fa‘*{? fa@é\ m&? m‘{@ »a@# fa"ﬂ m-‘“{@
o 2
S & F© & & 63;5‘ @(g‘-"- & F & Kég’ P &*o@ a@@ $:§° 8@@ ;\@6‘ é\'b@
E: \\$ ‘(\5& ~0‘§b e G 6‘# 3 \\‘ﬁb = @‘é\ %‘}? R " o® ‘x‘i""'\ ¥
A G A T A & & & ¢ of
13.06% ] G ol Sl Sl S AR i : ,LJ, &
' % o 6‘6& &= g oy & & ﬁf\:&' L
-18.00
-23.00
-28.00 \\V . -
Vf
Eocene Sourced
-33.00




Higher Diamondoids: A Source Signature?
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During early maturation diamondoids are formed by catalytic processes in source
rocks. They grow via a molecular “snowball” process to larger and larger
diamondoids depending on catalytic conditions in source rocks.

New work on higher diamondoids (1,000 to 1,000,000 times less abundant than
adamantane) indicates the possibility of a robust source signature hidden in their
ratios to lower diamodoids and in their isomer distributions.



Higher Diamondoid Abundance:
Source Specific Markers Retained Through Dry Gas Window
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Higher Diamondoid Ratios:
Distinguishing Miocene Facies in Coastal Basins
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Higher Diamondoid Ratios:

Two Types of Miocene Condensates in the Santa Barbara Basin
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Higher Diamondoid Ratios:
Distinguishing Vallecitos Condensate Sources
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d'3C adamantanes

Combining diamondoid isotopes and QEDA
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d'3C adamantanes

Miocene Facies: detrital dominated vs. biogenic dominated

pentamantanes (|+2) / triamantane
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d'3C adamantanes

A Cretaceous cracked source atValecitos

pentamantanes (|+2) / triamantane
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Conclusions

*Over |00 petroleum samples from the San Joaquin, Salinas,
Santa Barbara, Los Angeles, and the Eel River basin have been
analyzed.

*High maturity contributions have been recognized in many
San Joaquin, Santa Barbara, and Eel River fields. This includes
approximately |/3 of studied samples. Most are mixtures
with immature components.

*Fingerprinting of ultra-stable markers indicates deep
cracked sources include the Cretaceous, Eocene, and
Miocene source rocks.
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Our Future Goals

|) Complete analysis of ultra-stable markers (isotopes and molecular
signatures) on select samples in study.

2) Increase the geographic distribution of sampling in California to other sites
where thermogenic gas, API gravity variability, or geology point to the possible
migration of hydrocarbons from deep cracked source rocks. In particular we
are interested in samples from the western San Joaquin Basin, Los Angeles
Basin, and California Borderland.

3) Extend quantitative diamondoid analysis (cracking studies) to seeps where
water washing, biodegradation, and evaporation may alter oil volume and
composition. This work will include higher diamondoids and diamondoid
acids.
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