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Abstract 
 
The association between organic matter (primary hydrocarbon reservoir) and authigenic quartz (brittleness indicator) is a critical 
relationship to understand when assessing reservoir quality in unconventional resource plays like the Marcellus Shale in the 
Appalachian Basin. Argon-ion milling and field emission scanning electron microscopy/energy dispersive X-ray spectroscopy was 
performed on a Marcellus sample (11% TOC by weight; 24% TOC by volume) from Ritchie County, West Virginia. Within much of 
the kerogen, interpreted as algal bituminite, nanometer-scaled quartz crystallites (~125 nm aggregates of smaller <50 nm ‘blobs’) were 
observed in a chain morphology – likely a ‘lattice’ in 3D.  Nanoquartz lattices (NQLs) were often observed emanating from authigenic 
‘in situ’ quartz silt, suggesting a genetic relationship between the two. The NQLs observed bear remarkable similarity in both scale 
and morphology to extracellular biomineralization generated by iron-reducing bacteria, which suggests the possibility of a microbial 
origin for biogenic quartz within the Marcellus. Where present, NQLs constitute a previously unrecognized volume of quartz which, 
due to the individual cystallites’ nanometer-scale and the intimate association with organic matter, is unobservable with light 
microscope, standard automated SEM analyses (e.g. QEMSCAN), and likely even XRD. Concerning reservoir quality evaluation, 
NQLs may outline potential cleavage planes within otherwise ductile organic matter. These cleavage planes could act as pre-propped 
permeability paths connecting intraorganic nanoporosity to hydraulically stimulated fractures. The prevalence of the NQL 
phenomenon in the Marcellus is unknown; more extensive sampling is necessary. Future analysis is needed to ascertain the origins 
(isotope work, if possible on micrometer and nanometer-scaled minerals) and implications (rock mechanics) of NQLs. 
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quartz (brittleness indicator) is critical relationship to understand when assessing reservoir 
quality in unconventional resource plays like the Appalachian basin’s Marcellus shale. Argon-
ion milling and field emission scanning electron microscopy / energy dispersive X-ray 
spectroscopy was performed on a Marcellus sample (11% TOC by weight; 24% TOC by 
volume) from Ritchie Co., WV.  Within much of the kerogen, interpreted as algal bituminite, 
nanometer-scaled quartz crystallites (~125 nm aggregates of smaller <50nm ‘blobs’) were 
observed in a chain morphology – likely a ‘lattice’ in 3D.  Nanoquartz lattices (NQLs) were 
often observed emanating from authigenic ‘in situ’ quartz silt, suggesting a genetic 
relationship between the two.  The NQLs observed bear remarkable similarity in both scale 
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and morphology to extracellular biomineralization generated by iron-reducing bacteria [9] 
[10], which suggests the possibility of a microbial origin for biogenic quartz within the 
Marcellus. Where present, NQLs constitute a previously unrecognized volume of quartz 
which, due to the individual cystallites’ nanometer-scale and the intimate association with 
organic matter, is unobservable with light microscope, standard automated SEM analyses (e.g. 
QEMSCAN), and likely even XRD.  Concerning reservoir quality evaluation, NQLs may 
outline potential cleavage planes within otherwise ductile organic matter.  These cleavage 
planes could act as pre-propped permeability paths connecting intraorganic nanoporosity to 
hydraulically stimulated fractures The prevalence of the NQL phenomenon in the Marcellus
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hydraulically stimulated fractures. The prevalence of the NQL phenomenon in the Marcellus 
is unknown; more extensive sampling is necessary.  Future analysis is needed to ascertain the 
origins (isotope work, if possible on micrometer and nanometer-scaled minerals) and 
implications (rock mechanics) of NQLs.
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R. Brocke, et al. Acritarchs and prasinophytes of   
the Silurian-Devonian GSSP (Klonk, Barrandian 
area, Czech Republic). Bulletin of Geosciences 
81(1), 27-41. (2006)

50 μm palynology

Kröger et al. (2002) – in vitro silica globule 
‘lattice’ formation after 5 minutes in solution 
of silaffins and polyamines (found in 
bacterial extracellular polymeric 
substances).  
*Image scaled ¼ to account for in vitro 
conditions.

Furukawa and O’Reilly (2009) – silica 
globule chain formation (after 7 days) 
observed in iron (III) reducing bacteria 
extracellular polymeric substances.   
image inverted to highlight silica 
globules.
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NANO-QUARTZ LATTICE PHYSICAL IMPLICATIONS
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Modified from Blood, 2011, Sequence straitgraphic control on 
lateral placement in the Marcellus Shale, Appalachian basin
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CONCLUSIONS
1. NQLs represent a previously unrecognized volume of quartz in the Marcellus Formation (not 

readily resolvable without ion milling and SEM due to its nanometer scale  and inherent relationship 
with opaque organic matter) Such quartz may be present in other organic rich formations

Kröger et al (2002) Figure 4 Modified.  SEM images of in vitro amorphous silica morphogenesis, to imitate biomineralization.  ‘Latticed’ structures formed at (A) 3.5 minutes, (B) 4.5 
minutes, (C) 5 minutes, and (D) 8 minutes after addition of silaffins to a buffered monosilicic acid solution.  Silaffins (and polyamines) are zwitterionic and induce silica 
polycondensation.   Scale bars are 2 microns.  Silica is confrimed with EDX.  The in vitro environment of this experiment resulted in silica spheres 4-7 times larger than found in nature. 

with opaque organic matter).  Such quartz may be present in other organic-rich formations. 

2. Opaline silica precipitation may have been mediated by microbial action, such that authigenic 
silica formed during eogenesis.  This silica may be the precursor to the more well-formed authigenic 
quartz silt observed ubiquitously throughout the organic-rich portions of the Marcellus.  The 
presence of abundant authigenic quartz therefore may be indicative of depositional environment.

3. The lattice morphology of nanoquartz may outline potential cleavage planes within organic matter, 
and therefore may represent the first open and permeable pathways between HC-filled intraorganic 
nanopores and stimulated fractures connected to the well bore.  In this case, latticed nanoquartz may 
behave as a natural proppant.
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FUTURE ANALYSES
Nano-quartz lattices have only been observed in abundance in one sample.  To ascertain its prevalence, 
further analysis is necessary.  Samples of variable kerogen type (geochemical and maceral), degree of 
maturation, and sequence stratigraphy could yield more insight into lattice abundance and generation. 

Isotope analysis of the authigenic quartz and sphalerite would help determine if the origins are biogenic 
or hydrothermal; this may be experimentally difficult given the micrometer and nanometer scale.  

p pp

Furukawa & O’Reilly (2007) Figure 6 Modified. Proposed mechanism for the formation of observed amorphous silica globules and their association with bacteria and extracellular 
polymeric substances (amorphous organic matter) from experimental systems.  (Step 1A) Dissolution of nontronite [or, for example, radiolarians] yields supersaturation of aqueous 
polysilicic acids with respect to amorphous silica; (Step 1B) Fe(III)-reducing bacteria [or, for example, sulfate-reducing bacteria] produces polyamines; (Step 2) Polysilicic acids are 
further polymerized to form <50nm amorphous silica globules with the help of polyamines; (Step 3) Negatively charged surface of amorphous silica globules become positively 
charged due to chemisorption; (Step 4) Positively charged amorphous silica globules are sorbed onto net negatively charged surfaces of bacteria and extracellular polymeric 
substances).
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Furukawa & O’Reilly (2007) Figure 4d Modified. TEM image of rapidly 
formed amorphous silica globules (black; confirmed by EDXS) organized in 
a chain structure, in the immediate vicinity of iron(III) reducing bacteria 
‘extracellular polymeric substances’ (i.e. gums generated by microbes)
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