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Abstract 
 
Natural gas can be stored as a condensed phase on shale matrix and organic materials or as conventional free gas in porous spaces (Lu 
et al., 1995). During the last decade, gas shale has been considered as important unconventional reservoirs in which part of the gas is 
stored in adsorbed state (Ross and Bustin, 2007). Several processes control fractionation and indeed retention mechanisms of gas 
hydrocarbons as the relative solubility of petroleum compounds in kerogen (Ritter, 2003), the gas adsorption on mineral surfaces 
(Brothers et al., 1991), in organic matter (Lamberson and Busting, 1993) or in nanopores of vitrinite (Ritter and Grover, 2005). In 
addition, several studies have paid attention to the distribution of pore system structures to further elucidate the gas storage process in 
these gas shales (Loucks et al., 2009).  
 
Most nanopores in these rocks are linked to the thermal cracking of the organic matter and are observed as intraparticle organic pores. 
This organic contribution to the shale porosity is a good candidate for "in situ" gas storage. Gas retention can be likely controlled by 
the evolution of TOC in the source rock. In this work, a method is proposed to calculate, at the basin scale, the evolution of TOC, 
organic porosity and gas retention capacity through time and space in shale gas. Application is done on a 3D basin model of the 
Barnett Shale in Texas, calibrated for thermal maturity on Rock-Eval and vitrinite reflectance data. In order to predict the evolution of 
TOC within shale, an organic carbon balance was derived from a compositional kinetic approach containing 18 classes (Behar et al., 
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2008). Also, gas adsorption potential on organic material was calculated using a modified-Langmuir model implemented within the 
basin simulator which takes into account temperature and remaining TOC. To reproduce the present-day average TOC distribution, an 
initial TOC map was determined by inversion of 3D calculations. Original TOC from 5% to 8% were consistent with observed TOC 
and maturity stages. Accordingly, organic matter cracking would be at the origin of more than half of the total shale porosity in mature 
zones. Applying the modified-Langmuir law, most retained gas in the Barnett Shale is concentrated in mature areas ranging from 40 to 
100 kg/m2. Under these conditions, the Barnett Shale can generate more late gas by secondary cracking and simultaneously these 
generated gases can likely be retained in these higher maturities zones.  
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The Shale Gas balance

Gas Generation
Storage Capacity
Expelled gas 

Available gas play at time t = f 

� Net gas in place:

� Stored Gas

� Free
� Dissolved
� Adsorbed

• Porosity

• Micro-fractures
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Special attention has been recently dragged on 
the instrumental role of the kerogen itself on 
the amount of gas stored in shale

Ross & Bustin 2007

Ross & Bustin 2009

Horn River Basin, British Columbia
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Organic Porosity potentially occurs as micro- and 
nano-porosity likely fitted to accommodate HC
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Kerogen micro-porosity
« Loucks’ porosity »

Loucks et al. (2009)
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Focus on the HC associated with the Kerogen, more 
specifically on CH4 adsorption modeling; with 

application to Lower Barnett shale, Fort Worth Basin 

The presented approach involves a specific module
fully coupled to an integrated basin model

The module relies on:

�The generation of CH 4 and the formation of organic
porosity, derived from a new compositional model
(Behar and Jarvie, in press )

�The back-calculation of the initial TOC of the SR

�A Langmuir derived formalism accounting for the
maximum adsorption capacity of the remaining TOC in
the thermally matured SR
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Gas generation and Computation of Carbon mass balance Computation of Carbon mass balance Computation of Carbon mass balance Computation of Carbon mass balance 
( ( ( ( KerogenKerogenKerogenKerogen C loss C loss C loss C loss ���� organic  organic  organic  organic  φ φ φ φ ), are derived from a new 19 fractions ), are derived from a new 19 fractions ), are derived from a new 19 fractions ), are derived from a new 19 fractions 
compositional thermal maturation modeling compositional thermal maturation modeling compositional thermal maturation modeling compositional thermal maturation modeling 
(Behar and (Behar and (Behar and (Behar and JarvieJarvieJarvieJarvie, , , , in pressin pressin pressin press).).).).

Generation of CH4 and of Organic Porosity
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simplified from Behar & Jarvie (in press)

SOURCE ROCK EVOLUTION

Immature kerogen

MFRS (2012)
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Gas adsorption formalism

Approach accounting for gas adsorption Approach accounting for gas adsorption Approach accounting for gas adsorption Approach accounting for gas adsorption 
on organic matter:on organic matter:on organic matter:on organic matter:

"Langmuir"Langmuir"Langmuir"Langmuir----based" adsorptionbased" adsorptionbased" adsorptionbased" adsorption

Maximum retention capacity Maximum retention capacity Maximum retention capacity Maximum retention capacity 
= f = f = f = f ((((P, T, Remaining TOCP, T, Remaining TOCP, T, Remaining TOCP, T, Remaining TOC))))

Accounting on HC composition (herein Accounting on HC composition (herein Accounting on HC composition (herein Accounting on HC composition (herein 
applied to CHapplied to CHapplied to CHapplied to CH4444))))
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Maximum retention
capacity (kg/m 3)



Application to Lower Barnett Shale Unit
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Fort Worth BasinFort Worth BasinFort Worth Basin

� Inverted forelandInverted forelandInverted forelandInverted foreland

� Max Burial: Max Burial: Max Burial: Max Burial: 
PermianPermianPermianPermian

� Erosion:Erosion:Erosion:Erosion:
late Permian late Permian late Permian late Permian 
to Cretaceousto Cretaceousto Cretaceousto Cretaceous

� Source Rock:Source Rock:Source Rock:Source Rock:
Upper Barnett ShaleUpper Barnett ShaleUpper Barnett ShaleUpper Barnett Shale

Lower Barnett ShaleLower Barnett ShaleLower Barnett ShaleLower Barnett Shale

modified from Pollastro (2003)
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Geographic extend of Barnett
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Blakely 1 well
Remaining TOC
4.5 wt.%
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Blakely 1 well
Initial TOC = 5.1 wt.%

Initial TOC distribution in the Lower Barnett Shale
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Mature zone of the Lower Barnett Shale unit 
Blakely 1 well
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Computed organic porosity in the Lower Barnett Shale
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Mature zone of the 
Lower Barnett Shale unit

e.g. Blakely 1 well
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Computed amount of CH4 adsorbed on Organic Matter
Lower Barnett Shale
Organically adsorbed CH4 = 1 to 3 kg/m3

~20 to 60 scf/t
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Conclusions

� In the perspective to assessing shale gas prospects, a In the perspective to assessing shale gas prospects, a In the perspective to assessing shale gas prospects, a In the perspective to assessing shale gas prospects, a 
method is proposed to model the evolution of TOC, organic method is proposed to model the evolution of TOC, organic method is proposed to model the evolution of TOC, organic method is proposed to model the evolution of TOC, organic 
porosity and gas adsorption potential associated with porosity and gas adsorption potential associated with porosity and gas adsorption potential associated with porosity and gas adsorption potential associated with kerogenkerogenkerogenkerogen
moieties. moieties. moieties. moieties. 

� The approach results in a specific numerical module fully The approach results in a specific numerical module fully The approach results in a specific numerical module fully The approach results in a specific numerical module fully 
coupled to an integrated basin model.coupled to an integrated basin model.coupled to an integrated basin model.coupled to an integrated basin model.

� The methodology has been applied to the Lower The methodology has been applied to the Lower The methodology has been applied to the Lower The methodology has been applied to the Lower 
Carboniferous (Carboniferous (Carboniferous (Carboniferous (MississipianMississipianMississipianMississipian) Lower Barnett unit in the Fort ) Lower Barnett unit in the Fort ) Lower Barnett unit in the Fort ) Lower Barnett unit in the Fort 
Worth Basin. Worth Basin. Worth Basin. Worth Basin. 
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Conclusions
� The modelling exercise provides a map of initial TOC, The modelling exercise provides a map of initial TOC, The modelling exercise provides a map of initial TOC, The modelling exercise provides a map of initial TOC, 

performed thanks to an inversion procedure and accounting for performed thanks to an inversion procedure and accounting for performed thanks to an inversion procedure and accounting for performed thanks to an inversion procedure and accounting for 
the specific reactivity of the considered the specific reactivity of the considered the specific reactivity of the considered the specific reactivity of the considered KerogenKerogenKerogenKerogen....

� The computed data honour the current measured remaining The computed data honour the current measured remaining The computed data honour the current measured remaining The computed data honour the current measured remaining 
TOC distribution as well as the maturity map of the Barnett TOC distribution as well as the maturity map of the Barnett TOC distribution as well as the maturity map of the Barnett TOC distribution as well as the maturity map of the Barnett 
shale.shale.shale.shale.

� According to the model, the thermal cracking of organics According to the model, the thermal cracking of organics According to the model, the thermal cracking of organics According to the model, the thermal cracking of organics 
creates an organic porosity up to 4% in mature areas.creates an organic porosity up to 4% in mature areas.creates an organic porosity up to 4% in mature areas.creates an organic porosity up to 4% in mature areas.

� In mature areas of the basin, the part of the In mature areas of the basin, the part of the In mature areas of the basin, the part of the In mature areas of the basin, the part of the gas which is gas which is gas which is gas which is 
adsorbedadsorbedadsorbedadsorbed on organics on organics on organics on organics in the Lower Barnett Shale is suggested in the Lower Barnett Shale is suggested in the Lower Barnett Shale is suggested in the Lower Barnett Shale is suggested 
to range to range to range to range between 1 to 3 kg/mbetween 1 to 3 kg/mbetween 1 to 3 kg/mbetween 1 to 3 kg/m3333 . . . . 
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