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Abstract

The interpretation of coarse-grained deposits in distal foreland basins has varied greatly. Some have interpreted distal coarse sediments as a
result of increased tectonic shortening, exhumation, and the resultant increase in source material. In contrast, others attribute these distal coarse
sediments to periods of tectonic quiescence, flexural rebound, and reworking of proximal deposits into the distal foreland. We address this
question by measuring lag-times of these sediments in the central Cordilleran foreland basin. The time span between source exhumation and
sedimentation (i.e., lag time) is measured with the cooling age of the source material through thermochronology and the depositional age of the
foreland deposits. Lag times of distal coarse deposits should be relatively long if the sediments accumulated during periods of tectonic
quiescence, whereas lag times should be short in the case of syn-thrusting distal deposition. We sampled coarse-grained proximal units in the
Sevier thrust belt in Utah and their distal equivalents up to 300 km east of the thrust front, and generated detrital apatite fission track (AFT) and
zircon (U-Th)/He (ZHe) ages. We also further constrained the depositional age of the distal coarse sediments through detrital zircon ages (DZ).
AFT cooling ages for the proximal upper Campanian Price River Formation are 79.8 + 6.3 Ma in the lower part of the formation and 74.5 + 6.4
Ma higher up in the section. DZ ages of the distal equivalent of the Price River Formation (the Sego Sandstone) show a maximum depositional
age of circa 76 Ma. The Maastrichtian to Paleocene North Horn Formation, which is separated from the Price River Formation by an angular
unconformity, has an AFT age of 66.1 + 6.2 Ma. This suggests that Paleozoic strata within the Charleston-Nebo salient were exhumed from ~4-5
km depth during the late Cretaceous, recording the timing of active deformation. The depositional ages of these units are within error of the
cooling ages, indicating very short (approximating to 0) lag times, rapid exhumation of the Sevier fold-thrust belt, and syntectonic deposition.
Ongoing work is focused on measuring lag-times of distal course sediments in the Sevier foreland from the Upper Jurassic to Upper Cretaceous
time.
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Abstract:

The interpretation of coarse-grained deposits in distal foreland basins has varied greatly. Some have interpreted
distal coarse sediments as a result of increased tectonic shortening, exhumation, and the resultant increase in
source material. In contrast, others attribute these distal coarse sediments to periods of tectonic quiescence,
flexural rebound, and reworking of proximal deposits into the distal foreland. We address this question by mea-
suring lag-times of these sediments in the central Cordilleran foreland basin. The time span between source ex-
humation and sedimentation (i.e., lag time) is measured with the cooling age of the source material through
thermochronology and the depositional age of the foreland deposits. Lag times of distal coarse deposits should
be relatively long if the sediments accumulated during periods of tectonic quiescence, whereas lag times
should be short in the case of syn-thrusting distal deposition. We sampled coarse-grained proximal units in the
Sevier thrust belt in Utah and their distal equivalents up to 300 km east of the thrust front, and generated detri-
tal apatite fission track (AFT) and zircon (U-Th)/He (ZHe) ages. We also further constrained the depositional age
of the distal coarse sediments through detrital zircon ages (DZ). AFT cooling ages for the proximal upper Cam-
panian Price River Formation are 79.8 + 6.3 Ma in the lower part of the formation and 74.5 + 6.4 Ma higher up in
the section. DZ ages of the distal equivalent of the Price River Formation (the Sego Sandstone) show a maxi-
mum depositional age of circa 76 Ma. The Maastrichtian to Paleocene North Horn Formation, which is separated
from the Price River Formation by an angular unconformity, has an AFT age of 66.1 + 6.2 Ma. This suggests that
Paleozoic strata within the Charleston-Nebo salient were exhumed from ~4-5 km depth during the late Creta-
ceous, recording the timing of active deformation. The depositional ages of these units are within error of the
cooling ages, indicating very short (approximating to 0) lag times, rapid exhumation of the Sevier fold-thrust
belt, and syntectonic deposition. Ongoing work is focused on measuring lag-times of distal course sediments in
the Sevier foreland from the Upper Jurassic to Upper Cretaceous time.

Background:

Syntectonic vs. Anti-tectonic deposition -

Two-phase stratigraphic model (anti-tectonic)

Figure 1 The two-phase stratigraphic model,
and example of an anti-tectonic basin filling
model, was proposed by Heller et al. (1988)
and Beck et al. (1988) and has been used by
many to interpret coarse grained sediments
in the distal foreland system. The model pre-
dicts that upward coarsening strata in the
proximal foreland represent thrust advance,
whereas upward coarsening strata in the
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Using lag time to test these basin filling models -

exhumation

depostional age tgq

Figure 2 Lag-time t| is the difference between the source cooling age t. and and the depositional age in
the of the foreland basin deposit ty (after Brandon et al. 1988; Brandon and Vance, 1992; Garver et al., 1999;
Reiners and Shuster, 2009).
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Figure 3 At left - Schematic sketh of exhumation through an orogenic wedge. At right - Constant lag times
represent steady state exhumation, lag times that decrease up-section represent an increase in exhuma-
tion, and lag times that increase up-section represent an decrease in exhumation (Carrapa, 2009).

Research:
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Figure 4 Western Interior Cretaceous Seawa
with an index map of the geographic distri-
bution of the research samples (Cretaceous
Seaway map was modified from Blakey 2009).
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Figure 5 Temporal distribution of stratigraphic horizons from which research samples were taken (modified
from Franczyk et al., 1992; Cobban et al., 2006).

Finding the right thermochronometer to measure source exhumation -

Figure 6 There are numerous low
temperature thermochronom-
eters, three of which are apatite
(U-Th)/He, apatite fission track,
and zircon (U-Th)/He. Each of
these records different thermal
histories. For our purposes, apa-
tite fission track has proved to be
the most effective (modified
from Dodson, 1972; Naeser, 1981;
Gleadow and Duddy, 1981).
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Figure 7 To constrain which
thermochronometer is most ef-
fective, we first attempted to use
zircon (U-Th)/He, which has a
closure temperature of ~180 °C.
All of these samples displayed
discordant ages, showing that
the source material never
reached temperatures higher
than ~180 °C, making it likely
that they were never buried
deeper than 9 km.
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Conclusions:

Apatite fission track thermochronology of synorogenic conglomerates is an effective thermochronometer within
the Charleston-Nebo and its foredeep counterparts to track source exhumation.

Paleozoic source strata within the Sevier fold-thrust belt reached temperatures above 80-100 °C and were ex-
humed from ~4-5 km depth within the Sevier fold and thrust (assuming ~20°C/km).

Lag-times of both the Price River Cgl. And the North Horn Fm. and Sego Sandstone is approximately 0 Myr, indi-
cating rapid exhumation and transport (i.e., sediment is not stored for long periods of time in the proximal fore-
deep). This appears to be consistent with a syntectonic setting.

Short lag-times (i.e., rapid exhumation of source material) support growth in the hinterland through back thrust-
ing and duplex growth — all indicating that the orogenic wedge was subcritical during the Campanian to Maas-
trichtian.
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