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Abstract

Seismic technology offers promise to monitor the CO, flood front in reservoirs undergoing enhanced
oil recovery and CO; sequestration. This laboratory study is focused on understanding the seismic
signature of CO, flooding in rocks. Compressional (Vp) and shear wave (Vs) velocities were measured
on several samples (fabricated glass bead, Berea Sandstone and Tuscaloosa Sandstone) as a function of
effective pressure and pore fluids. In these experiments, phase change of CO, was achieved by varying
pore pressure. Realistic subsurface conditions were simulated by having mixed phase (brine,
hydrocarbon and CO;) in the rock samples. It is observed that both Vp and Vs decrease when

CO; changes from gas to liquid, contrary to the general expectations. This behavior can be explained
due to the smaller change in fluid compressibility (89%) as compared to fluid density change (800%)
with phase change.

Shear velocity measurements as a function of effective pressure showed Biot effective pressure
coefficient (n) is approximately equal to 1.0 and independent of the fluid phase. For compressional
wave velocity, n is approximately 1.0 for gaseous CO, and much less than 1.0 for liquid CO,. The
experimental work allows feasibility study of mapping the CO, front from a surface seismic survey.
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1. Abstract 2. Introduction

Seismic technology offers promise to monitor the CO, flood front G5z Inecton 4D Seismic Study field

in the reservoirs undergoing enhanced oil recovery and CO, se-
questration. This laboratory study is focused on understanding
seismic signature of CO,flooding in rocks. Compressional (V)
and shear wave (Vs) velocities were measured on several sam-
ples (fused glass beads, Berea sandstone and Tuscaloosa sand-
stone) as a function of effective pressure and pore fluids. In the-
se experiments, phase change of CO,was achieved by varying e e | m
pore pressure. Realistic subsurface conditions were simulated Tt b R L L L e b L N Lk Lo
by having mixed phase (brine, hydrocarbon and CO,) in the rock o

samples. It is observed that both V, and Vs decrease when CO,
changes from gas to liquid. This behavior is due to smaller
change in fluid compressibility (89%) as compared to fluid densi-
ty change (800%) with phase change.
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Biot-Gassmann modeling shows good agreement with experi-
mental results for gas replaced by brine and olil replacing brine
system but not for liquid CO, flooding. The experimental work al-
lows feasibility study of mapping CO front from surface seismic (NETL, 2010)
survey. Both pre-flooded and post-flooded well logs are com-

pared and correlated based on the understanding of the labora- :

tory scale behavior and Biot-Gassmann theory. * Decreases the surface tension between rock (Landro et al., 2001) \
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Variables (contd): 6. Experimental algorithm Exp 2: Velocity 7. Procedure & Apparatus for Flooding experiment

effective press

n: known as Biot effective stress coefficient. 'n’ is crucial in
determining the role of pore pressure on parameters gov-
erned by effective pressure. Previous published u values on
brine and oil saturated sandstones. This coefficient is calcu-
lated using equations for static and dynamic basis
respectively (Todd and Simons, 1972).
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Sample details

8. Sample and Fluid properties

9a. Experiment 1: Velocity equilibration study
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Biot Gassmann theory not in good agreement with CO2 flooding (3") scenario

10. Empirical relationship and correlation with well logs
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Linear regression analysis is performed on the experimental imped-
ance data points in CO2 flooding scenario to generate an empirical

relationship.

Where, r is found to be 0.5 km.gm/sec/cc, S, is the saturation of the
oil and Z4yis the P-impedance calculated in the dry state. r is the
slope of the velocity variation as CO, saturation changes. It depends
on type of rock and pore fluid distribution while undergoing satura-
tion. Some of the velocity vales during low CO, saturation (high oil
saturation) may represent CO, in miscible state.
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11. Pre-flooded actual and synthetic wells logs
with 20% CO, fluid substitution

Depth, ft

Vi, kmisec  V,, km/sec
0 1 2 3 *
3200
3210
3220
3230
3240
3250
3260 oA
X
3270 OO O
3280 X % o/
3290 /7
oqand PO Empirical |
0g an . Log JEXP. Oil &
| and water Biot O, corr
Biot pred. . 2 ter
saturated predicted
urated

Pre-flooded log from a well
159-2 on the study field is
plotted with empirical and
Biot predicted elastic
velocity values.

Shear parameters shows
good match with Biot pre-
dicted values. However,
the theory under predicts
the compressional velocity
values with saturation.

12. Conclusions

saturation.

placing dry state and oil replacing
saturated conditions.

The P-velocity generated using

better mapping of the CO, saturation.

P-impedance shows high sensitivity to the

The Biot Gassmann predicted P-velocity is
found to be good agreement with brine re

brine

Biot

Gassmann deviate by 10% from the exper-
imental values in CO, flooding scenario.
The proposed impedance model can be
used for Tuscaloosa trend samples for
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