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Abstract

The generation of 2D and 3D grids of normally distributed random fields conditioned on well data is often required in reservoir modeling. Such
fields can be obtained from the application of three groups of methods: unconditional simulation with kriging interpolation (turning band or
spectral methods), sequential gaussian simulation (SGS), and Cholesky factorization of the covariance matrix. However, all methods have
limitations. First, it is shown, that the second moment of the process conditionally simulated with the help of the kriging method are not identical
to the target second moment (a priori known statistics). Second, SGS cannot be calculated without limitation on a number of neighbors. As a
result, SGS is only asymptotically exact. Third, which has the advantage of being general and exact, is to use a Cholesky factorization of the
covariance matrix representing grid points correlation. However, for fields of large size, the Cholesky factorization can be computationally
prohibitive. Another approach is to use spectral function of full covariance matrix. In this work, we show that covariance of two arbitrary
spectral components of conditional process could be represented as the product of functions. In this case, the Cholesky factorization could be
considerably simplified. A feature of this approach is its computational simplicity and suitability to parallel implementation.
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Abstract

Generation of 2D and 3D normally distributed random fields
conditioned on well data is often required in reservoir moad-
eling. Such fields can be obtained by using three groups of
methods: unconditional simulation with kriging interpolation
(turning band or spectral methods), Sequential Gaussian
Simulation (SGS) an d Cholesky factorization of the covari-
ance matrix. However, all these methods have limitations.
First, it is known, that the second moment of the stochas-
tic process conditionally simulated by kriging method is not
identical to the target second moment (a priori known statis-
tics). Second, SGS can'’t be calculated without limitation on
the number of neighbors. As a result, SGS is only asymp-
totically exact. Third approach, which has the advantage
of being general and exact, is to use a Cholesky factoriza-
tion of the covariance matrix representing grid points cor-
relation. However, for the large fields the Cholesky fac-
forization can be computationally expensive. In this work
we present an alternative approach, based on the usage of
spectral representation of a conditional process. It is shown
that covariance of two arbitrary spectral components could
be factorized into functions of corresponding harmonics. In
this case the Cholesky decomposition could be consider-
ably simplified. The advantage of the presented approach
is its accuracy and computational simplicity.

1. Introduction

Mathematical modeling is often required in field develop-
ment optimization problems, i.e. an optimal control of
waterflooding, selection of enhanced oil recovery meth-
ods, design and execution of hydraulic fracturing and other
workovers programs. The main stages of oil-gas reservoir
modeling are

e Geological modeling
e Upscaling
e Hydrodynamic modeling

The geological model consists of wells, a three-dimensional
grid, lithotofacial and petrophysical (porosity, permeability,
oil and gas saturations) fields. The petrophysical properties
are assumed to be stationary stochastic processes (Fig. 1)
within each lithofacie. There are two approaches to con-
struct these processes: the statistical estimation and gen-
eration of realizations conditioned on well data, i.e. the con-
ditional simulation.

First one could be performed using different interpolation
methods [3, 1]. The classical interpolation techniques men-
tioned above are effective for sufficient smooth functions,
while the realizations of stationary random fields are likely
to belong to Ly space [7, 5]. To overcome the limitations
of classical approaches, the krigging algorithm (Best Linear
Unbiased Estimation) was developed [4, 8, 9].

In this paper we consider the second approach, i.e. the
conditional simulation in geological modeling, and its nu-
merically efficient realization. We present the alternative
approach of conditional simulation based on Cholesky de-
composition of the covariance matrix in Fourier domain.

2. Problem statement

Let X (Fig. 1) be a stationary random vector with zero mean
and covariance matrix C = E(XX™). Suppose the values
of random vector X be known at m well-crossed cells of
regularly spaced grid

XTL1 :y17XTl2 :ZJQ»---Xnm :yma (1)

where ny,no...n,, are cell indices.
The focus of this paper is generation of realizations of the
vector X conditioned on well data (1).
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Figure 1: Realizations of 1D stationary stochastic process
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3. Decomposition of covariance matrix in Fourier
domain

It is known [2] that the covariance » of process X condi-
tioned on (1) is:

Y =c-B'c,'B, (2)

where:

C is unconditional covariance of X

Cy, is unconditional covariance of well data (1)

B is unconditional covariance of X and well data (1)

For Fourier transformation of the covariance matrix discrete
Fourier transformation (DFT) is used. With help of matrix
computation and theory of stochastic processes the covari-
ance matrix > in Fourier domain could be expressed as
follows:

SW=FYFt=D@ND ' —wcC 'W+)D 3
Wkl:e_%w,kzl..]\f,l:l..m ©)
where:
Fis Fourier transform matrix
D is a diagonal matrix with components of the vector FC(1)
() is the first column of the matrix C
C;-lis the inverse covariance matrix of components (1)
n; is crossed cell
N is the total number of cells
m is the number well-crossed cells

It should be noted, that matrix > % is positive defined and
Hermitian.

To calculate Cholesky factorization of the matrix > “ it is
sufficient to decompose the matrix

G=2ND ' —wc, twt. (4)
Following that:
S — DGD = DLLTD = (DL)(DL)*, (5)

where L is the Cholesky decomposition of G.
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Figure 2: Fourier transform of realization of 1D stationary
stochastic process

Now, if Z is the realization of the random vector X , the
Fourier transform of ¥ (Fig. 2) is

7 = F# = DL7, (6)

where 17 is a column-vector of independent standard normal
random variables.

Using mathematical induction it is easy to prove that
Cholesky decomposition algorithm of G is reduced as fol-
lows:

Forj=1..2N
w’j — W+) ()

Li; = —1; Gj,1 <]
- AJU7]
9i = I,

Algorithm 1: Algorithm for the Cholesky decomposition
of the covariance matrix in Fourier domain.
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With help of back DFT algorithm the realization of the ran-
dom vector X has the form

T=F1g¥ (7)

4. Estimation of conditional simulation parameters
and computational costs

One of the main characteristic of conditional simulation
methods is their computational costs. Suppose m is the
number of crossed cell, N is the total number of cells. Ac-
cording to Algorithm 1, there are O(m?) operations for the
matrix inversion, O(Nm?) operations for calculation of ma-
trix additions and matrix-vector multiplications, O(N?) op-
erations for DFT (or O(Nlog(N)) in FFT case). Finally,
computational cost of algorithm is O(N? + m? + Nm?) (or
O(Nlog(N) + m> + Nm?) in FFT case) operations. Let us
remark that in most geological models m << N, then com-
putational burden is O(N? + Nm?).

For quality evaluation, the estimation of conditional simula-
tion parameters, i.e. mathematical expectation, dispersion,
and covariance should be calculated.

= 2
éf:D@ﬂZﬁklkﬁ—uﬂ (8)
i . N
Xy = CovXiXj) = . 3, (o = pi) 5 — 15)

where:

X, is the component i of the random vector X
2% is the realization  of the component X;
N, is the number of realizations

1; is expectation of x;

Conditional expectation and dispersion for an arbitrary cell
is shown in Fig.3 and Fig.4 respectively.
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Figure 3: The estimation of conditional mathematical ex-
pectation depends on number of realizations
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Figure 4: The estimation of conditional dispersion depends
on number of realizations



Conditional covariance in an arbitrary cell in 1D case for
2000 realizations is shown in Fig.5.
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Figure 5: The estimation of conditional covariance in an ar-
bitrary cell for 2000 realizations

Let's compare the estimations of spectral approach and
SGS. Fig. 6 shows that the covariance of spectral approach
realizations is close fitted to the theoretical covariance.
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Figure 6: Theoretical values and the estimation of condi-
tional covariance for 1000 realizations in 2D case.
a) - Theoretical values, b) - Estimation for spectral approach
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Figure 7: The estimation of conditional covariance for 1000
realizations in 2D case.

a) - Estimation for SGS with 12 neighbors, b) - Estimation
for SGS with 50 neighbors

Fig. 7 shows that SGS approach gives a good results only
with large number of neighbors, but in this case SGS can
be computationally too expensive.

5. Examples

The example results of 2D and 3D conditional simulation of
porosity are shown in Fig. 8, Fig. 9 respectively. The pa-
rameters of model:

e ~ 500000(128 x 128 x 32) cells
o field square is 5000 x 5000m?
o4 wells

e Covariance function:

5 (-2 (y—¢P (-2
C(F,7) = 0.0Gea:p(—\/ 2 + 72 + I )

where:

7 = (z,y,2) and 7 = (2/,%/,7) are coordinates of two
arbitrary cells

R, = 1000m is correlation radius along the axis x

Ry = 1000m is correlation radius along the axis y

R. = 3m is correlation radius along the axis z

e Calculation time of one realization is ~ 5min

PORO
. L 0.30
“a p 0.05

N 5000 m e

Figure 8: Two realizations of conditional simulation using
spectral approach in 2D case. Wells locations are depicted
as points
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Figure 9: Two realizations of conditional simulation using
spectral approach in 3D

6. History matching

Traditionally, reservoir development decisions are based on
a production forecast from a single history matched reser-
voir. The main aspect of history matching, i.e. optimization
procedure, is parametrization.

In this work we have concentrates on the spatial distribu-
tion of porosity and permeability witch can be parametrized
in various ways:

e Grid Block.
The approach is to consider all grid blocks. The main
problems are the large number of parameters and the
lack of spatial continuity.

¢ Region.
The use of homogeneous regions is the way to reduce
the number of parameters. The assumption of homo-
geneity within a region may not be justifiable and lead
to abrupt changes between the boundary regions.

e Pilot points.
A number of pilot points (p.p) are used to build smooth
spatially correlated correction of porosity and permeabil-
ity. The problems: difficult algorithm of p.p selection pro-
cedure and p.p change porosity and permeability fields
locally.

¢ Global parametrization.
A final class of parameters are those that cannot be
linked to a particular spatial location, called global or un-
derlying parameters: mean values, standard deviation,
correlation length.
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Figure 10: History matching by porosity and permeability
field parametrization

Fig. 10 shows the main problem of parametrization tech-
niques, i.e. itis necessary to transform a random realization
to target realization with minimal number of parameters.
The approach was described in this paper to concern with
the global parametrization technique. As the parametriza-
tion we use Fourier transform of stochastic process (6). Be-
cause of its rapidly decreasing form (Fig. 2) we could use
the first several components of 17 as parameters. The main
problem of this technique is conserving the distribution of
parameters, i.e. the parameters should be independent
standard normal random variables.

Through the Bayesian prior function this problem could be
resolved. The general formula for the Bayesian posterior
distribution is given by

f(plo)=cf(plo)f(p)

where:

f(p|o) is the likelihood function

f(p) is the prior function

When both the prior distribution on the parameters and the
production uncertainty are assumed to be Gaussian, includ-
ing the prior result in an extra sum of squares term ([6]),here
denoted in vector notation,

Fplo) = cexp (= {A+ (- ) Cy = ) })

where:

A is sum of squares of production and observation data dif-
ference

p is the vector of parameters

1y is the vector of expectations of p
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Cj is the covariance matrix of p

In our case the parameters are independent and standard,
then the covariance matrix is the identity matrix, expecta-
tion is zero, and

f(plo) = cexp (— {A 1 Z(%)Q})

7. Conclusions I

In this wok we have shown that the spectral approach has
advantages:

1. High accuracy in comparision with SGS
2. Releativly low computitional costs

3. Easy porosity and permeability parametrization in
history matching problems

Being relatively fast and accurate, spectral approach algo-
rithm would be very useful in other application areas of con-
ditional simulation: electronics, finance, game theory, etc.
Further researches should be focused on the optimization
and parallel implementations of the algorithm.
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