Click to view article in PDF format.
GC
Reflector
Convergence and Rotation Attributes Facilitate Seismic Stratigraphy Interpretation*
Satinder Chopra1 and Kurt J. Marfurt2
Search and Discovery Article #40876 (2012)
Posted January 30, 2012
*Adapted from the Geophysical Corner column, prepared by the authors, in AAPG Explorer, January, 2012, and entitled “The Final Touch: Attributes Prove Their Worth”. Editor of Geophysical Corner is Bob A. Hardage ([email protected]). Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is Communications Director.
1 Arcis Corp., Calgary, Canada ([email protected])
2 University of Oklahoma, Norman, Oklahoma
Seismic stratigraphy requires interpreters to analyze the geometrical configurations and termination patterns of seismic reflection events. Maps of distinct families of these reflection behaviors usually can be interpreted to determine where distinct depositional processes occur across the mapped area. Reflection patterns such as toplap, onlap, downlap and erosional truncation are used as architectural elements to reconstruct the depositional environments imaged by seismic data.
Using such seismic-depositional environment maps – together with well control and modern and paleo analogues – allows interpreters to produce probability maps of “most-likely” lithofacies. Although coherence and curvature are excellent for delineating some seismic stratigraphic features, they have limited value in imaging classic seismic stratigraphy features such as onlap, progradation and erosional truncation.
Here we examine how newer volumetric attributes facilitate seismic stratigraphic analysis of large 3-D seismic volumes.
|
|
Changes in Next, the mean and standard deviations of these vector dips are calculated in small windows about each data sample. Conformable reflections will have small standard deviations of their reflection dips, while non-parallel events such as angular unconformities will have high standard deviation. In 2000, Barnes computed a vertical derivative of apparent Compressive deformation and wrench faulting cause fault blocks to rotate. The extent of rotation depends on the size of the block, the lithology and the stress levels. As individual fault blocks undergo rotation, higher stresses and fracturing may occur at block edges. Natural fractures are partially controlled by such fault-block rotation and partially depend on how individual fault segments intersect. Fault-block rotation also can control depositional processes by providing increased accommodation space in subsiding areas and enhancing erosional processes in uplifted areas. In view of the importance of fault block rotation, interpreters need a seismic attribute that allows the rotation of fault blocks to be better analyzed. In Figure 1, we show the behavior of reflection convergence for a channel with and without levee/overbank deposits for four scenarios:
We carried out the computation of both Using the scenarios presented in Figure 1, our interpretation of the zone within the yellow dotted ellipse is that levee/overbank deposits converge toward the channel margin to the northeast (magenta) and southwest (green). In Figure 3 we show a time slice through a Application of two attributes, namely
We thank Arcis Corporation for permission to show the data examples, as well as for the permission to publish this work. Barnes, A.E., 2000, Weighted average seismic attributes: Geophysics, v. 65/1, p. 275-285. Marfurt, K.J., and J. Rich, 2010, Beyond curvature-volumetric estimates of |
General statement



