Incorporation of Geology, Wells, Rock Physics into Anisotropy Estimation for Seismic Depth Imaging Enables “True Earth Model”*

Huyen Bui1, Peck Hwa David Ng2, Jenny Zhou2, Chih-Wen Kue2, and Martiris Smith2

Search and Discovery Article #40862 (2012)
Posted January 17, 2012

*Adapted from poster presentation at AAPG International Convention and Exhibition, Milan, Italy, October 23-26, 2011

1WesternGeco, Shlumberger, Houston, TX (HBui@slb.com)
2WesternGeco, Shlumberger, Houston, TX

Abstract

Subsequent to our previous paper on how to indicate anisotropy from well-seismic mistie analyses (Bui et al, 2010), we continue to present our currently practical workflow of how to incorporate geology, well, and rock physics in anisotropy estimation for seismic depth imaging. As we all know, that the seismic velocity is an important variable that can result in the lateral and vertical mis-positioning of the reservoir targets. Likely, it was always thought that if the depth migrated velocity was wrong, seismic anisotropic functions (Thomsen’s delta and epsilon) were wrong in a vertical transverse isotropic (VTI) case. In fact, the Thomsen’s delta and epsilon functions help to flatten the gathers, but the depth still may be wrong at zero offset. In fact, the most important parameter that results in wrong depth is the vertical seismic velocity used in seismic migration. In order to create the right migrated seismic velocity model, we need to understand the effect of geological constraints on anisotropy as well as on anisotropic seismic velocity in the study area.

There are a variety of methods to estimate anisotropy for seismic depth imaging. The global function of anisotropy is no longer valid, especially in the complex areas. In this paper we present our practical workflow to incorporate the rock physics from the well and geological information, such as checkshot, calibrated sonic, and geological markers to estimate anisotropy from surface seismic data at well location by using the 1D ray tracing method. This step is very important to tie the seismic events with the well markers into correct depth as well as flatten the common image point (CIP) gathers.

Subsequently, we performed local well tomography to upscale into 3D at the well location. Then anisotropic functions have been propagated along the interpreted seismic horizons using WesternGeco steering filter tool. Finally, the updated seismic velocity field
and anisotropic field have been incorporated with estimated dips and azimuths to generate geologically driven anisotropic velocity for seismic depth imaging. This approach has been applied to a study area, in the Green Canyon, in the Gulf of Mexico showing very promising results of seismic images consistent with the well information and geology.

References


Huyen BUI*, Peck-Hwa David NG, Jenny ZHOU, Chih-Wen KUE, Martinis SMITH, WesternGeco, Houston, TX, USA

Correspondence: Hbui@agb.com

Abstract

Subsequent to our previous paper on how to indicate anisotropy from well-seismic misfit analyses (Bui et al., 2010), this paper presents our currently practical workflow of how to incorporate geology, well and rockphysics in anisotropy estimation for seismic depth imaging. As we all know, that the seismic velocity is an important variable that can result in the lateral and vertical mis-positioning of the reservoir targets. Likely, it was always thought that if the depth migrated velocity was wrong, seismic anisotropy functions (Thomsen’s delta and epsilon) were wrong in a vertical transverse isotropic (VTI) case. In fact, the Thomsen’s delta and epsilon functions help to flatten the gather, but the depth still may be wrong at zero offset. In fact, the most important parameter that results in wrong depth is the vertical seismic velocity used in seismic migration. In order to create the right migrated seismic velocity model, we need to understand the effect of geological constraints on anisotropy as well as on anisotropic seismic velocity in the study area.

There are a variety of methods to estimate anisotropy for seismic depth imaging. The global function of anisotropy is no longer valid, especially in the complex areas. Our practical workflow is to incorporate the rock physics from the well and geological information, such as checkshot, calibrated sonic, and geological markers to estimate anisotropy from surface seismic data at well location by using the 1D ray tracing method. This step is very important to tie the seismic events with the well markers into correct depth as well as flatten the common image point (CIP) gathers. Subsequently, we performed local well tomography to upscale into 2D at the well location. Then anisotropy functions have been propagated along the interpreted seismic horizons using WesternGeco steering filter tool. Finally, the updated seismic velocity field and anisotropic field has been incorporated with estimated dips and azimuths to generate geologically driven anisotropic velocity for seismic depth imaging. This approach has been applied to a study area, in the Green Canyon, in the Gulf of Mexico showing very promising results of seismic images consistent with the well information and geology.

Concepts

- Paleo data, well correlation
- Biostratigraphic
- Rock Physics
- Use well-seismic mis-fit analysis to indicate anisotropy
- Quantity anisotropy determination
- Correct Vz, δ, κ, Φ, θ

Study Area

- Isopach Map of Supra-Salt Sediment Thickness
- E-Wave Plot Area
- Well locations for a and E analysis

Case Study

- Well 1 on seismic

Petrophysical analyses

- Trend analysis on T, Vp, Vs, Density, etc.
- Rock Physics

Well log editing

- Complete vertical velocity from MSIL
- OWIT trend from checkshot used to reconstruct shallow velocity
- Water layer velocity from seismic
- With edited density, VCI, GR, caliper, lithology, etc. to support later works

Rock Physics analyses

- Comprehensive rock physics analysis
- Use well-seismic misfit analysis to indicate anisotropy

Conclusions

- Improved well tie and depth estimation
- Enhanced reservoir characterization
- Better understanding of geology
- Improved seismic imaging

Keywords

- Anisotropy estimation
- Seismic depth imaging
- Geology
- Well data
- Rock physics
- Velocity modeling

Huyen BUI*, Peck-Hwa David NG, Jenny ZHOU, Chih-Wen KUE, Martinis SMITH, WesternGeco, Houston, TX, USA

Correspondence: HBui@aab.com

Conclusions

1. Proper incorporation of geology, rock physics and well information, help to update seismic velocity and derive appropriate δ & ϵ functions at well location (1D).
2. Seismic velocity correction using well velocity is the most critical and should be done before δ, ϵ estimation.
3. The correctness of 1D anisotropic model (at well locations) is very critical for the accuracy of entire 3D anisotropy and velocity model.
4. The geological horizons, dips, azimuths should be always used in 3D anisotropic models (TTI) building.

Some Results

Well 1 – Velocity vs. depth - VCI and ages

Well 1 – Synthetics on seismic

Well 1 – Anisotropy analysis - starting anisotropic model (WAVz)

Well 1 – Anisotropy analysis - Revised Vp/Vz

Well 1 – Anisotropy analysis - Revised Vp/Vz, δ

Well 1 – Anisotropy analysis - Revised Vp/Vz, 5, ϵ

Critical depth synthetic generation for anisotropy

Use as reference for model building, and depth error analysis

Well, Seismic time tie

Depth error analysis in synthetic

References

[References provided in the original document]

Acknowledgments

[Acknowledgments provided in the original document]