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Abstract

In recent years, substantial progress has been made in the production technology and assessment of shale gas plays, however, the
primary ecological and depositional controls of the enrichment and type of organic material into gas shales are less well studied. These
parameters have a major impact on the amount and quality of the associated gas.

Thick Namurian organic-rich mudstones in northern England are within the gas window. Complex palaeoecological and
sedimentological processes, combined with cyclical sea level changes, influenced the type and distribution of organic matter input into
the mudstones. The apparently monotonous mudrocks typically hold between 1 and 7% total organic carbon (TOC). Terrestrial plants
as well as phytoplanktonic and other algae contributed to the organic carbon content of the deposits. The terrestrial material was
delivered into the basin from river mouths and occurs throughout the entire mudstone succession, whereas the phytoplanktonic and
other algae appear to be only associated with marine sediments.
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This study investigates the biological influences on the quality of mudstones as a source and reservoir of shale gas. In detail, the
objectives are to: (1) interpret different lithofacies in terms of sedimentary processes and changing local environment; (2) investigate
the distribution and abundance of organic matter in relation to lithofacies and determine their potential for gas generation; (3) link
palaeoenvironments to larger scale climate change and carbon cycle events; and finally (4) develop a predictive model relating
biological input to shale gas prospectivity. For this, a multidisciplinary approach is used. Optical imaging of thin sections allows
detailed lithofacies analyses. 8*3Corg data are used to delineate horizons with organic material from terrestrial versus marine sources,
including the recognition of cryptic marine bands. These techniques are combined with the analysis of palynological samples to
document basin-wide changes in environmental conditions.
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Lithofacies in Thin Section
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Conclusions

Conclusions

O small-scale changes of mineralogy and sedimentary structures

O observation of the Carsington C4 core indicates relationship between
organic carbon content and main lithofacies

O first isotope tests reveal relatively light isotopic material

O decarbonating as best preparation method to run routine carbon

isotope analysis
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