Potential for Supercritical Carbon Sequestration in the Offshore Bedrock Formations of the Baltimore
Canyon Trough*

Brian Slater!, Alexa Stolorow® and Langhorne Smith®

Search and Discovery Article #80143 (2011)
Posted March 18, 2011

*Adapted from oral presentation at AAPG Eastern Section Meeting, Kalamazoo, Michigan, September 25-29, 2010

'New York State Museum, Albany, NY 12230 (bslater@mail.nysed.gov)

Abstract

Although geologists continue to find terrestrial rock formations that have the capacity to hold moderate amounts of carbon dioxide, the
greatest potential for carbon sequestration in North Eastern United States lies in the offshore geologic formations that make up the
continental shelf.

The Baltimore Canyon Trough is a portion of the continental shelf which lies approximately 100 miles south of Long Island and over
50 miles southeast of New Jersey. It is over 7,500 square miles in size and consists of Mesozoic and Cenozoic limestones, dolomites,
sandstones, and shales. A number of oil and gas companies as well as the Continental Offshore Stratigraphic Test (COST), the
Offshore Drilling Project (ODP), and the Deep Sea Drilling Project (DSDP) have explored this area. A large amount of data including
wireline logs, cores, and seismic surveys has been collected and much of it is available for additional study. Previous work indicates
that there are several sandstone beds in this region having porosities greater than 25% and permeabilities over 100 md This suggests
an extremely large capacity for potential storage of supercritical CO2.

Offshore sequestration also avoids the issues associated with individual landowners’” mineral rights and public concerns over leaks or

drinking water contamination. Offshore sequestration also offers the benefit of additional trapping mechanisms such as density
inversion and formation of hydrates.
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lll: Offshore Component

Baltimore

More than 450 miles
of coastline

Notes by presenter: Not only has the MRCSP been working over the last 7 years, it has also been growing. New York joined the partnership in 2005
and just last year New Jersey joined as well. Along with Maryland, these states have a combined coastline of over 450 miles. This has inspired a
portion of Phase III to be dedicated toward offshore research.



Why Offshore?

e Proximity to point sources
 None of the on land leasing and legal issues
* No NIMBY'’s

(Though there will be environmental opposition)

e Possibility of enormous capacity
e Density inversion

e Low salinity formation water
 Hydrate formation?

 Pressure management



Proximity to CO,, Point Sources

CO:Sources (metric tons/year)

Cement Production
@ 0-10,000

Coal-Fired Electricity Generation
@ 100,000-1,000,000

. ~1,000,000

Other Electricity Generation
@® 0-10,000
@ 10-100,000

. 100,000 - 1,000,000

. >1,000,000

Petroleum and Natural Gas Processing
@ 700,000-1,000,000

. >1,000,000




Leasing

e State waters extend 3 miles
from shore

ME ‘
Portland : %

e Federal waters extend from 3 to
200 miles from shore

e 51 exploratory wells drilled
between 1947 and the early
1980’s
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tested gas flows as high as | gy s
189 me / day L= R | North Atlantic

Planning Area

 All leases have reverted back
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Sea Water DenS|ty
Inversion

The increase In
density with depth is
greater with CO2 than
Transition Zone with sea water, so

that between 8,000

and 10,000 feet liquid
Liquid CO, sinks CO2 becomes more
dense than seawater
and will sink rather
than float.

Liquid CO, floats

3500 This may prove to be
(11482) a factor in both

0.97 1.00 1.03 1.06 1.09 trapping mechanisms

Density (g/cm?) and additional safety

In the event of a leak.
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CO: Hydrate
Formation

In high pressure, low
temperature conditions
CO, will form a
clathrate (aka hydrate)
which is a crystalline
water-based solid in
which CO, molecules
are trapped in a “cage”
of hydrogen bonded
water molecules.

Formation of CO,
hydrate in its stability
zone may form a solid
cap that can serve as a
secondary seal for
sequestered CO,
below.
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Regional Composite Stratigraphic
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S C h I e e D O m e “The most significant structural closure in this

area is the large domal anticline known as
Schlee Dome. Uplift of the dome is interpreted
GRS L t0 be associated with emplacement of an
igneous intrusive dike swarm during the Late
Jurassic. The resulting 2-km-high topographic
feature produced on the coastal plain (Lippert,
1983; Jansa and Pe-Piper, 1988) was later
eroded flat prior to the end of the Barremian,
exposing Upper Jurassic rocks at the crest of
the dome (Crutcher, 1983; Lippert, 1983;
Amato and Giordano, 1985).” — Prather, 1991
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Well Data

APl Number

Lease No.

OPD Name

Operator

Lat (dec
deg)

Long (dec
deg)

TD (ft)

Completion
Date

61-105-00016

0OCS-A0009

Hudson Canyon

Exxon

39.49722

-73.10556

12253

9/28/1979

61-105-00003

0CS-A0015

Hudson Canyon

Mobil

39.55556

-73.11111

17449

12/29/1978

61-105-00023

0OCS-A0015

Hudson Canyon

Mobil

39.45556

-73.19444

8312

10/1/1981

61-105-00007

0CS-A0024

Hudson Canyon

Conoco

39.46111

-72.97222

12000

6/7/1978

61-105-00001

Hudson Canyon

QOcean Prod

38.45556

-72.74444

16043

2/28/1976

61-105-00004

0CS-A0028

Hudson Canyon

Texaco

39.41944

-72.55278

15025

8/26/1978

61-105-00011

0CS-A0028

Hudson Canyon

Texaco

39.41944

-72.65833

17708

3/20/1979

61-105-00017

0OCS-A0028

Hudson Canyon

Texaco

39.51667

-72.64722

16103

5/25/1980

61-105-00021

0CS-A0028

Hudson Canyon

Texaco

39.46111

-72.58056

16050

3/24/1981

61-105-00019

0CS-A0029

Hudson Canyon

Exxon

39.49167

-72.52222

17121

11/2/1980

61-105-00009

0CS-A0032

Hudson Canyon

Shell

39.49722

-73.15278

14000

7/14/1978

61-105-00015

0CS-A0038

Hudson Canyon

Texaco

39.48056

-72.64722

17807

12/1/1979

61-105-00014

OCS-A0038

Hudson Canyon

Tenneco

39.43056

-72.59167

18400

6/10/1979

61-105-00018

0CS-A0038

Hudson Canyon

Tenneco

39.37222

-72.63611

16475

10/14/1980

61-105-00006

0CS-A0042

Hudson Canyon

Houston O&M

39.32778

-73.16667

12500

9/22/1978

61-105-00002

0OCS-A0046

Hudson Canyon

Exxon

39.32778

-712.71667

17620

12/23/1978

61-105-00010

0CS-A0046

Hudson Canyon

Exxon

39.39167

-72.67778

16800

7/15/1979

61-105-00005

0OCS-A0048

Hudson Canyon

Gulf

39.40833

-73.30833

12813

3/31/1979

61-105-00022

0CS-A0052

Hudson Canyon

Exxon

39.29722

-72.68056

15205

7/5/1981

61-105-00020

OCS-A0055

Hudson Canyon

Exxon

39.17500

-72.65278

17753

5/7/1981

61-105-00012

0CS-A0057

Hudson Canyon

Houston O&M

39.15556

-73.03889

17505

2/8/1979

61-105-00008

0OCS-A0059

Hudson Canyon

Gulf

39.15278

-72.89167

18554

1/29/1979

61-105-00013

OCS-A0065

Hudson Canyon

Exxon

39.10278

-712.79167

15968

4/15M1979

61-104-00004

0OCS-A0075

Wilmington Canyon

Mobil

38.97778

-73.18889

1200

1/24/1979

61-104-00005

0OCS-A0Q75

Wilmington Canvyon

Mobil

38.98056

-73.19167

13992

5/14/1979

61-104-00002

Wilmington Canyon

Chevron

38.91944

-72.82778

15820

1/24/1979
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61-104-00003

OCS-A0096

Wilmington Canyon

Shell

38.71667

-73.60278

13500

2/19M1979

61-104-00001

0CS-A0097

Wilmington Canyon

Shell

38.86111

-73.50556

17500

12/16/1978

61-104-00011

0OCS-A0317

Wilmington Canyon

Shell

38.60278

-72.96944

11631

7/9/1984

61-104-00007

0CS-A0131

Wilmington Canyon

Tenneco

38.61389

-73.47500

18300

10/11/1979

61-104-00010

0OCS-A0336

Wilmington Canyon

Shell

38.45278

-73.22500

16000

5/22/1984

61-104-00009

0OCS-A0337

Wilmington Canyon

Shell

38.51111

-73.29444

14500

12/21/1983
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RESEAHRCH

» 465 Boxes of core material
(including COST-B2 & COST-B3)

» 245 boxes of unwashed cuttings
(~5,000 individual samples)

« 1959 boxes of washed cuttings
(~40,000 individual samples)
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« 32 Boxes of vials
(~6,500 individual samples)

Litagh VT

» 88 boxes of thin sections
(~6,300 slides)

« Geophysical logs, micropaleontology
summary, and other data from many of the
wells
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Baltimore Canyon Trough
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Sequestration Potential in Sandstone Units
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COST B-2
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Sequestration Potential in Limestone Units
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Facies / Lithology

Porosity

Ave. © (%) Range

Prograded shelf margin limestones

2.4

0.0-17.0

Transitional marine sandstones

6.1

0.0-29.0

Coastal Plain sandstones

8.7

0.0-33.0

Fine-grained deltaic sandstones

9.2

0.0-28.0

Aggradded shelf-margin limetsones

8.5

0.0-26.0

Limestone buildups

12.2

0.0-13.0

Chalky Tubiphytes packstone

6.3

0.0 - 31.1

Shoal-water oolite grainstone

17

0.0-36.0

Shelf-margin deltaic sandstones

Facies / Lithology

18.2

0.0 - 30.0

Permeability

Ave. K (md)**

Range

Prograded shelf margin limestones

0.34

<0.01-17

Transitional marine sandstones

0.71

< 0.01 -46

Coastal Plain sandstones

26.19

< 0.01 - 349

Fine-grained deltaic sandstones

71.11

<0.01-195

Aggradded shelf-margin limetsones

5.1

<0.01 - 156

Limestone buildups

Chalky Tubiphytes packstone

0.47

<0.01-12.6

Shoal-water oolite grainstone

2.45

<0.01-12.2

Shelf-margin deltaic sandstones

(From Prather, 1991) *n = number of beds, **based on perm plug measurements

Porosity and permeability data from 3 exploratory wells in the study area show
high porosity, high permeability beds in both sandstone and limestone units.




“The coastal-plain and transitional-marine facies are overlain by a
fine-grained deltaic complex dominated by delta-plain shales which
collectively form a regionally extensive top seal unit.” - prather, 1991
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PRM Seqguences
(Potomac, Raritan, Magothy)

New Jersey
Sequence Lithology/Geometry Coastal
Stratigraphy

TSE":H marginal marine- delta front sand
TST/HST marginal marine- delta front sand Raritan Fm.
S.B. g

TST/HST Potomac

LST

<7 | S

underlying units

Figure Courtesy of Ken Miller (Rutger’s University)



Recent geologic cross sections based on well logs depict
Isolated “pockets” of Potomac Sands. This contradicts the
earlier interpretations of continuous aquifers. If this scenario is
correct and extends offshore, it is likely to reduce storage
capacity but also reduce risk of long distance plume migration.
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Figure Courtesy of Ken Miller (Rutger’s University)




WEST EAST

New Jersey shore Atlantic Ocean
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plain continental shelf continental rise olain

——

—\_\_\_\_\_

\ —  Tertiary
ﬁ Cretaceous

10,000 feet -Lr;i?rfjc Ju rassu:
(3,050 meters)

90 miles (80 km)

CONTINENTAL CRUST
(Precambrian and Paleozoic sedimentary and
metamorphic rocks and intrusive igneous rocks)

From USGS (after Sheridan 1989)




Coastal Hydraulic Head

(From Cohen et al, 2010)

Current research
shows that the
hydraulic head along
the coast of NJ and
NY Is oriented such
that fresh water Is
pushing outward into
the ocean. This flow
may prevent, or
Inhibit, the migration
of sequestered CO,
toward terrestrial
regions where these
reservoirs outcrop.

Decrease Iin salinity
as the CO, plume
migrates eastward
would also encourge
Increased dissolution
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From USGS RC750, 1977

Temperature

Based on data from the
COST-B2 well, reaching
the critical temperature of
31°C will require a
reservoir depth of at least
1,000 feet. This should
not be an issue since
reaching the target
pressure will require a
depth of at least 2,500
feet to sequester CO, as
a supercritical fluid.
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STRUCTURE CONTOUR MAP OF PRE-MES(OZOLC
BASEMENT, LANDWARD MARGIN OF !
BALTIMORE CANYON TROUGH

by
Richard ¥. Benzon

Pressure (atm)

Pressure

Just as with onshore
sequestration, a
reservoir depth greater
than 2500 feet will be
necessary to sequester
CO, in a supercritical
state.
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Bathymetry

The cost of drilling an offshore
well increases dramatically as
you get into deeper waters. It is in
our best interest to find target
reservoirs in areas where the sea
floor is relatively shallow (not
beyond the shelf break)

Baltimore Canyon Trough
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Work Plan

(A lot has been done, but there’s much more left to do!)

e Correlation of Offshore terminology and onshore unit names

« Detalled analysis of shale facies and other potential sealing
units

o Establish porosity cutoffs and calculate net thickness of high
porosity — permeabillity zones for each facies association

 Plume migration simulations that account for hydraulic head
 Take a closer look at Schlee Dome

e Investigate the effects of offshore factors such as hydrate
formation and density inversion

* Digitize and analyze wireline logs
e Seismic Interpretation
o Capacity Calculations



Preliminary Correlation Chart
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Conclusions

» Advantages to sequestering carbon dioxide in the sedimentary units of the
Baltimore Canyon Trough, offshore Atlantic Coast include ease of leasing,
additional trapping mechanisms, and large potential capacity.

* A wide variety of data is already available and a significant amount of analysis
as already been done by previous studies.

» There are numerous sandstone and limestone formations with high porosities
and permeabilities making them excellent potential sequestration reservoirs.

» Migration pathways and confining units such as shales require more attention,
but appear to be sufficient for containing sequestered CO.,,.

Long Term Future Work

Although this project is part of the MRCSP’s Phase lll, the work being
done is more comparable to the onshore characterization that was done
in Phase |. Collection of new data such as a 3-D seismic survey may
become an option in subsequent phases of the project.



More opportunities to
the north east in the
Georges Bank
region and to the
south off the coast of
Virginia and North
Carolina.




“Exploration wells have penetrated at least four of the largest
structural culminations in the Baltimore Canyon Trough. These
wells show that sealing and reservoir facies are present in both the
Interior-shelf and shelf margin trends.” — Prather, 1991

Thank You






