Prediction of Petrophysical Properties of Trenton-Black River (Ordovician) Reservoirs by Comparing Pore
Architecture and Permeability to Sonic Velocity*

John E. Thornton*? and G. Michael Grammer*

Search and Discovery Article #50508 (2011)
Posted November 7, 2011

* Adapted from oral presentation at AAPG Eastern Section Meeting, Washington, D.C., USA, September 25-27, 2011
Editor’s note: Please view a companion article by these authors, entitled “Enhanced Reservoir Characterization and Permeability Prediction of Heterogeneous Carbonate
Reservoirs from Sonic Velocity and Digital Image Analysis,” Search and Discovery Article #50689 (2012).

"Western Michigan University, Kalamazoo, Ml
“Current address: Shell Exploration and Production Company, Houston, TX (johnedwinthornton@gmail.com)

Abstract

Reservoir characterization of carbonate rocks is complicated by heterogeneous pore architecture related to primary depositional facies and
subsequent diagenesis; thisis especially true in diagenetically-atered and structurally-influenced Trenton-Black River reservoirs of the
Michigan Basin. Accurate and reliable prediction of reservoir properties within hydrothermal dolomite (HTD) reservoirs through the use of
acoustic properties would significantly aid exploration and reservoir characterization effortsin HTD reservoirs both within and outside of the
Michigan Basin.

Results indicate that digital image analysis of thin sections and |aboratory measures of sonic velocity both quantify pore architecture of
carbonate rocks. Integration of measures of pore architecture and physical propertiesinto multiple variable linear regression can accurately
predict permeability of core plugs. Additionally, use of minipermeametry and comparison of core plug and whole core measures of porosity
and permeability indicate that Trenton-Black River textures are petrophysically heterogeneous from the millimeter to meter scale. Thisis due
to the influence of bioturbation on primary depositional textures and their subsequent diagenetic pathways as well as facies stacking patterns
within a 1-D sequence stratigraphic framework.

Integrating modern borehole measures of physical properties and measures of pore architecture derived from cuttings data may increase the

predictability of permeability within hydrothermal dolomite reservoirs over log data alone. Care must be taken when upscaling petrophysical
measurements from core plugs to reservoir flow units in highly heterogeneous carbonate reservoirs.
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Seismic “sag” and negative flower structures (Ord., Michigan)
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Stratigraphic control on lateral variability in HTD
reservoirs (Slave point field, Western Canada, Devonian)
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Primary facies control on distribution of HTD
IN matrix and formation of reservoir facies

1. Primary facies controls original pore system
architecture

2. Primary facies and stratigraphic architecture
control early diagenetic modification which can
enhance or limit subsequent porosity development

3. Facies/Depositional Environment provides insight
Into expected 3-D geometry and continuity of
reservoir in subsurface



Primary facies control on
distribution of HTD In
matrix and formation of
T/BR reservoir facies
(Ordovician, Michigan)
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Stratigraphic Control on Reservoir Distribution
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Facles and Sequence Stratigraphic Control on
Reservoir Distribution
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Goals of Current Study

. Increase predictabllity of reservoir away from
faults and fractures

. Understand scale dependence of petrophysical
measurements

. Test previously established correlation between
pore architecture/permeability and Vs In
Paleozoic rocks

. Test the viability of predicting permeability from
pore architecture

. Test the tie between sonic velocity and
permeability



Methods and Materials

Definition of petrophysical facies

Digital image analysis of thin sections

Laboratory sonic velocity

Minipermeametry

Comparison of porosity and permeability measurements
Multiple variable linear regression

5 cores with core analyses and wireline logs
61 core plugs with porosity and permeability
61 thin sections cut from core plugs
Lab sonic velocity 37/61 core plugs
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Minipermeameter
measurements

Probe/sample Pressure transducer, flow meters,
data acquisition modules, gas flow
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Whole Core vs. Plug Porosity and Permeability
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Variations in Reservoir Permeability at the cm-scale
Burrowed Facies

Thornton and Grammer (2010)
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Digital Image Analysis

ImagePro Plus

Color-cube
segmentation

Can measure
parameters for each
pore
— Area, length, width,
roundness, perimeter
Pore parameters
(measures of pore
architecture) are
calculated




Carbonates
have varying
pore types
that
Influence
permeability




Velocity versus Porosity in Carbonates
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Core Plug Values Core Plug Values

® =10.59% ® = 10.50%
K=1.04 mD

Vp = 4866 m/s Vp = 6023 m/s

Thornton and Grammer (2010)



Average percent error between actual and predicted
p-wave velocity = 5.31%
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Integrating porosity, P- and S-wave velocities, density and DIA parameters
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Summary — General Trends in Trenton
and Black River Reservoirs

Reservoir quality has a direct correlation to primary
depositional facies

Because of this, the predictability of reservoir
distribution, both laterally and vertically, may be
enhanced by the development of a sequence stratigraphic
framework

Porosity and permeability (i.e. reservoir quality) is a
direct function of pore archltecture which again is often
tied to primary depositional facies and/or position within
a sequence stratigraphic framework

Detailed characterization of pore architecture should
lead to a better understanding of the 3-D distribution
and connectivity of pores — image analysis and CT scans,
along with laboratory measured Vs, may lend insight
Into the acoustic properties of different reservoir and
non-reservoir facies





