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Abstract

Deep-water slope channel deposits have been proven to hold substantial hydrocarbon reserves making them attractive targets for exploration
along continental margins. Advancesin seismic imaging has resulted in vivid 3D perspectives of deep-water sedimentary systemsin the
subsurface. Despite these advances, sedimentological detail irresolvablein seismic datais crucial for understanding the connectivity within,
and amongst, reservoir-scale sedimentary bodies. An outcrop belt, 130 m high and 2.5 km long, from the Cretaceous Tres Pasos Formation,
Chile, represents an important means for acquiring this sedimentological data, allowing turbidite-channel development to be analyzed from
the bed- to channel body-scale. This study attempts to capture the stratigraphic complexities of slope-channel strata, with afocus on internal
channel-fill architecture and channel-stacking behavior.

The Tres Pasos Formation consists primarily of mudstone- and siltstone-dominated strata associated with a progradational, graded slope
system characterized by > 800 m of relief. Architectural analysis was completed on coarse clastic lower- to base-of-slope deposits. Numerous
gullies cross-cut the outcrop at high angles and provide excellent 2D and 3D exposures of channel geometries. The data collected consists of
>1600 m of measured section, hundreds of pal eoflow measurements, numerous photomosaics, and thousands of GPS waypoints used to map
channel stratain 3D. At least three channel complexes characterize the stratigraphy, demarcated by bounding siltstone-dominated deposits
and significant shiftsin channel-stacking patterns. Channel complexes are composite features comprised of stacked channels, each of whichis
6-15 m thick. The margins of channels are characterized by thinly interbedded sandstone and siltstone that were deposited within the confines
of the conduit. Channel axes consist of sedimentation units 0.2-3 m thick, attributed to collapsing high-concentration turbidity currents.

Eighteen channel elements stack vertically, or slightly offset of one another, in the 130-m thick section. The overall aggradational stacking
pattern is likely associated with confinement of the channel system; however a mechanism for this confinement is specul ative because
channel complex-scale outer levees have yet to be recognized in the outcrop belt. It is also plausible that structural confinement in the narrow
Magallanes Basin foredeep influenced the architecture of slope channels.
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Presentation Objectives: Slope Channel Discussion

- capture the hierarchical stratigraphic complexities of slope-channel
strata with a focus on internal channel-fill architecture and channel-
stacking behavior

- demonstrate analogies between the outcropping channel complex-set
In the Tres Pasos Formation and seismically imaged slope strata

- consider the implications of quantified outcrop observations for:

*slope-channel evolution sreservoir heterogeneity
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Paleogeographic Context: Magallanes Foreland Basin

Depositional Architecture
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Dataset and Study Area

» channel strata obliquely exposed along an outcrop belt 2.5 km long X 130 m thick

« 2000 m of section; 183 channel element packages (18 channels); 3596 individual
sedimentation units; and 100s of sole marks measured

Laguna Figueroa
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Dataset and Study Area

» channel strata obliquely exposed along an outcrop belt 2.5 km long X 130 m thick

« 2000 m of section; 183 channel element packages (18 channels); 3596 individual
sedimentation units; and 100s of sole marks measured
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Element Stacking: Tres Pasos Channel Complexes

» 18 channels identified and correlated across outcrop

» channels intersect outcrop obliquely
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Element Stacking: Tres Pasos Channel Complexes

» 18 channels identified and correlated across outcrop

» channels characterized by widespread basal siltstone drapes
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Element Stacking: Tres Pasos Channel Complexes

» 18 channels identified and correlated across outcrop
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Element Stacking: Tres Pasos Channel Complexes




Element Stacking: Tres Pasos Channel Complexes

» 18 channels identified and correlated across outcrop

* the transition from axis to margin is rapid, ch

aracterized by a significant shift in rock quality
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Tres Pasos Fm. Channel Element Metrics

» 18 channels identified and correlated across outcrop

* the transition from axis to margin is rapid, characterized by a significant shift in rock quality
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Element Stacking: Tres Pasos Channel Complexes

« constructing strike perspectives of channels from oblique outcrop

» facies mapping * margin delineation * paleo-flow
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Element Stacking: Tres Pasos Channel Complexes

« facies mapping

* margin delineation

* paleo-flow




Element Stacking: Tres Pasos Channel Complexes

18 stacked channel
elements mapped

» 3 channel complexes
* 1 channel complex-set

* channel elements
focused/confined

« aggradation
considerable**

» what facies are lateral to
the channel elements?
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Tres Pasos Channel Complexes: Architectural Analogies

THIS STUDY: OFFSHORE NIGERIA NILE DELTA

(POSAMENTIER AND KOLLA, 2003) (SAMUEL ET AL., 2003)
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Complex Stacking: Tres Pasos Channel Complex-Set

« quantification of
channel complex
architecture
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Complex Stacking: Tres Pasos Channel Complex-Set
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Element Stacking: Lateral Offset vs. Aggradation

« overall, lateral offset is minimal with > 80% of channels offset < half a channel width

« under-filled channels and impact of abandonment relief (cf., McHargue et al., 2011)
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Element Stacking: Interpretations and Conclusions

IMPLICATIONS:

- mature, late-stage fill of
the channel complex-set is
laterally constrained but
more highly amalgamated
(increase in channel-
element connectivity)

Impact of Inner Levees (complexes 2 & 3)

- promote development of abandonment relief (cf, underfilled channels of McHargue et al., 2011)
- focus channel initiating turbidity currents
- cause deep erosion and limits inner levee sedimentation

Later fill phases (complexes 2 & 3)

- inner levees established

\
|
|

- elements focused ]
- aggradation decreases as conduit fills /

[ ——

Initial fill phase (complex 1)

- elements relatively unconfined
- elements systematically stack westward (87%)
- aggradation greatest

—_

Master conduit initiated
- both incisional and levee-bound conduit possible
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