Stratigraphic Stacking of Outcropping Slope Channels, Tres Pasos Formation, Chile: Insights into Turbidite Reservoir Distribution*

Ryan Macauley1 and Steve Hubbard1

Search and Discovery Article #50478 (2011)
Posted September 26, 2011

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Houston, Texas, USA, April 10-13, 2011

1University of Calgary, Calgary, AB, Canada (r_macauley@hotmail.com)

Abstract

Deep-water slope channel deposits have been proven to hold substantial hydrocarbon reserves making them attractive targets for exploration along continental margins. Advances in seismic imaging has resulted in vivid 3D perspectives of deep-water sedimentary systems in the subsurface. Despite these advances, sedimentological detail irresolvable in seismic data is crucial for understanding the connectivity within, and amongst, reservoir-scale sedimentary bodies. An outcrop belt, 130 m high and 2.5 km long, from the Cretaceous Tres Pasos Formation, Chile, represents an important means for acquiring this sedimentological data, allowing turbidite-channel development to be analyzed from the bed- to channel body-scale. This study attempts to capture the stratigraphic complexities of slope-channel strata, with a focus on internal channel-fill architecture and channel-stacking behavior.

The Tres Pasos Formation consists primarily of mudstone- and siltstone-dominated strata associated with a progradational, graded slope system characterized by > 800 m of relief. Architectural analysis was completed on coarse clastic lower- to base-of-slope deposits. Numerous gullies cross-cut the outcrop at high angles and provide excellent 2D and 3D exposures of channel geometries. The data collected consists of >1600 m of measured section, hundreds of paleoflow measurements, numerous photomosaics, and thousands of GPS waypoints used to map channel strata in 3D. At least three channel complexes characterize the stratigraphy, demarcated by bounding siltstone-dominated deposits and significant shifts in channel-stacking patterns. Channel complexes are composite features comprised of stacked channels, each of which is 6-15 m thick. The margins of channels are characterized by thinly interbedded sandstone and siltstone that were deposited within the confines of the conduit. Channel axes consist of sedimentation units 0.2-3 m thick, attributed to collapsing high-concentration turbidity currents.

Eighteen channel elements stack vertically, or slightly offset of one another, in the 130-m thick section. The overall aggradational stacking pattern is likely associated with confinement of the channel system; however a mechanism for this confinement is speculative because channel complex-scale outer levees have yet to be recognized in the outcrop belt. It is also plausible that structural confinement in the narrow Magallanes Basin foredeep influenced the architecture of slope channels.
References

Stratigraphic Stacking of Outcropping Slope Channels, Tres Pasos Formation, Chile: Insights Into Turbidite Reservoir Distribution

Ryan Macauley & Steve Hubbard
Presentation Objectives: Slope Channel Discussion

- capture the hierarchical stratigraphic complexities of slope-channel strata with a focus on internal channel-fill architecture and channel-stacking behavior

- demonstrate analogies between the outcropping channel complex-set in the Tres Pasos Formation and seismically imaged slope strata

- consider the implications of quantified outcrop observations for:
 - slope-channel evolution
 - reservoir heterogeneity
Paleogeographic Context: Magallanes Foreland Basin

- Axially-filling Andean foreland
- Context: base of high-relief slope clinoform (800 m relief; 30 km long)

Hubbard et al. (2010), JSR

Romans et al. (2011), MPG
Dataset and Study Area

- channel strata obliquely exposed along an outcrop belt 2.5 km long X 130 m thick
- 2000 m of section; 183 channel element packages (18 channels); 3596 individual sedimentation units; and 100s of sole marks measured
Dataset and Study Area

- channel strata obliquely exposed along an outcrop belt 2.5 km long X 130 m thick
- 2000 m of section; 183 channel element packages (18 channels); 3596 individual sedimentation units; and 100s of sole marks measured
Dataset and Study Area

- channel strata obliquely exposed along an outcrop belt 2.5 km long X 130 m thick
- 2000 m of section; 183 channel element packages (18 channels); 3596 individual sedimentation units; and 100s of sole marks measured
Dataset and Study Area

- channel strata obliquely exposed along an outcrop belt 2.5 km long X 130 m thick
- 2000 m of section; 183 channel element packages (18 channels); 3596 individual sedimentation units; and 100s of sole marks measured
Element Stacking: Tres Pasos Channel Complexes

- 18 channels identified and correlated across outcrop
- Channels intersect outcrop obliquely
Element Stacking: Tres Pasos Channel Complexes

- 18 channels identified and correlated across outcrop
- channels characterized by widespread basal siltstone drapes
Element Stacking: Tres Pasos Channel Complexes

- 18 channels identified and correlated across outcrop
- Channels characterized by widespread basal siltstone drapes

Siltstone Drape Units Ubiquitous: Record Sediment By-pass

Stacked Channel Elements

white arrows = element boundaries

north

Paleoflow roughly (highly oblique to image frame)
Element Stacking: Tres Pasos Channel Complexes

- 18 channels identified and correlated across outcrop
- drape units significant in off-axis and margin areas; commonly eroded in axes
Element Stacking: Tres Pasos Channel Complexes

• 18 channels identified and correlated across outcrop
• Drape units significant in off-axis and margin areas; commonly eroded in axes

Siltstone Drape Units Ubiquitous: Record Sediment By-pass
Element Stacking: Tres Pasos Channel Complexes

- 18 channels identified and correlated across outcrop
- the transition from axis to margin is rapid, characterized by a significant shift in rock quality

Paleoflow roughly due south (highly oblique to outcrop orientation)
Element Stacking: Tres Pasos Channel Complexes

- 18 channels identified and correlated across outcrop
- Axis to Margin Transition: 20-40 m

Axis to Margin Transition: 20-40 m
Tres Pasos Fm. Channel Element Metrics

- 18 channels identified and correlated across outcrop
- the transition from axis to margin is rapid, characterized by a significant shift in rock quality
18 channels identified and correlated across outcrop

Axis to Margin Transition: 20-40 m
Element Stacking: Tres Pasos Channel Complexes

- constructing strike perspectives of channels from oblique outcrop
- facies mapping
- margin delineation
- paleo-flow

Paleoflow roughly due south (highly oblique to outcrop orientation)
Element Stacking: Tres Pasos Channel Complexes

- facies mapping
- margin delineation
- paleo-flow

- sinuosity 1.01-1.05
- symmetric fill
Element Stacking: Tres Pasos Channel Complexes

- 18 stacked channel elements mapped
- 3 channel complexes
- 1 channel complex-set
- channel elements focused/confined
- aggradation considerable**
- what facies are lateral to the channel elements?
Tres Pasos Channel Complexes: Architectural Analogies

THIS STUDY:

Karoo Basin
Hodgson et al. (2011)

Benin-Major
Deptuck et al. (2007)

Indus Fan
Sylvester et al. (2011)

Offshore Nigeria
(Posamentier and Kolla, 2003)

Nile Delta
(Samuel et al., 2003)

by analogy, bounding inner levees likely

Each example presented at equal scale

Vertical Exaggeration = 5 times

SCALE: ____ | 100 m

1 km
Complex Stacking: Tres Pasos Channel Complex-Set

- quantification of channel complex architecture
Complex Stacking: Tres Pasos Channel Complex-Set

- at least 25 channels stack on top of one another in the outcrop
- data from numerous sections compiled

Siltstone Drape Units Recording Sediment By-pass

- quantification of channel complex architecture

![Graph showing complex width variability](image)

- max. complex width (confinement) decreases up-section
- range in complex width (organization) decreases up-section
- ave. element aggradation decreases up-section
Element Stacking: Lateral Offset vs. Aggradation

- overall, lateral offset is minimal with > 80% of channels offset < half a channel width
- under-filled channels and impact of abandonment relief (cf., McHargue et al., 2011)
IMPLICATIONS:

- mature, late-stage fill of the channel complex-set is laterally constrained but more highly amalgamated (increase in channel-element connectivity)
Acknowledgements

• research sponsors:

• collaborators and field assistants:

Andrea Fildani, Brian Romans, Jake Covault, Julian Clark, Kirt Campion, Rodrigo Bastida, Matt McCullough, Sean Fletcher, Dustin Bauer, Erin Pemberton, Brett Miles, Kerrie Bann