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Abstract

Stratigraphic and facies analysis of the Neoproterozoic Wonoka Formation and Patsy Hill Member of the Bonney Sandstone that
surround Patawarta allochthonous salt sheet permit identification of an isolated suprasalt carapace section of the Wonoka Fm that is
condensed and lithologically distinct from the correlative minibasin section. The two sections are spatially separated by a 3.8 km wide
zone of outcropping Callana Group in the Patawarta diapir.

The Wonoka Fm carapace section displays a uniform 14 m thickness of parallel strata over a distance of 2.5 km and lies
unconformably above the Patawarta salt sheet. The lower 7 m comprises upper-shoreface to foreshore silty lime mudstone and the
upper 7 m comprises debris-flow facies interbedded with peritidal sandstone and shale capped by lagoonal stromatolitic mudstone.
Debris-flow clasts were derived from older Wonoka Fm units and the Callana Grp. Equivalent strata in the adjacent minibasin
comprise outer-shelf to upper-shoreface lime mudstone, siltstone and shale with minor sandstone. These strata form the bulk of a
tapered composite halokinetic sequence (CHS) that thins (975 m to 117 m) and turns upward (<86 degrees) toward the diapir over a
distance of 457 m. The uppermost shale unit in the minibasin contains 12 thin, sandy, pebble conglomerate beds, also sourced from
older Wonoka Fm units and the Callana Grp, that display a progressive unroofing sequence.
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The carapace and correlative minibasin section record the highstand systems tract (HST) of a 3rd-order depositional sequence. The
transgressive systems tract (TST) and early HST formed by the lower Wonoka Fm units in the minibasin are not preserved in the
carapace section. The top of the Wonoka Fm carapace is a sequence boundary (SB) that correlates to a SB in the minibasin formed at
the contact between the Wonoka Fm and overlying Patsy Hill Member of the Bonney Sandstone.

The debris flow facies in the Wonoka Fm carapace and the correlative conglomerate beds in the minibasin are interpreted to be locally
derived from strata that were originally deposited atop the ramping Patawarta salt sheet between the carapace and the minibasin. We
infer that during the process of salt sheet breakout, the tip of the Patawarta sheet became a zone of diapiric inflation forming a local
topographic high in the margin area, which was eroded during the later part of the HST and shed clasts onto both the carapace and the
minibasin.
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Geologic Map of Patawarta Diapir and Adjacent Neoproterozoic Strata

‘Wonoka Formation &

Figure 13:

~The Wonoka Formation and Patsy Hill Memeber of the Bonney Sandstone deposited locally as a suprasalt carapace section and
subsalt section

~The Wonoka Formation and Patsy Hill Member for one tapered-composite halokinetic sequence

Interpretation of Depositional Environments

Map Unit

Sandstone beds

Figure 31:
~The Patsy Hill Member (lower limestone,
sandstone, and upper limestone beds) form
on a tidally-dominated shelf

~The Patsy Hill Member was deposited
during the Lowstand Systems Tract

Lower dolomitebeds

Tapered
Green mudsione e

Lovwer lmestane mbr

Figure 32: Compilation of depositional environment, sequence stra-
tigraphy, and halokinetic sequence stratigraphy

Figure 30:

~The Wonoka Formtion (undifferentiated, lower lime-
stone, middle limestone, upper limestone, and green
mustone member) form on a wave-dominated shelf
that shallows to a coastal plain depositional environ-
ment

~The Wonoka Formation was deposited during the
Highstand Systems Tract

Fence Diagram and Photographs of Wonoka Formation and Patsy Hill Member of Bonney Sandstone

Figure 21 low angle cross
bedding; lower shoreface

Figure 16: flute casts;
dominated lower 10 upper shoreface

Figure 15 hummocky cross
stratification; wave-dominated

Figure 19; conglomeratel and crypt
Tower shorcface lgal idal char

el
inlet Figure 20: black shale and dolomitic
‘concretions; main tidal channel infet

Depositional Sequence

Map Units Stratigraphy

West

East

Axial Tyace of Anticline A Transgressive Systems Tract

ce

Carapace

i Transgressive Surface

Sandsione (Npbps) | Lowstand Systems Tract
0 Sequence Boundary

Green Mudstone:
Mbr (Nwwm)

100 m L 7 D\ & 5 “m i — i
300m '

Highstand Systems Tract
Patawarta
Diapir

Tgure 14:
~The Wonoka Formation forms the highstand systems tract of a 3rd order depositional sequence
-The Patsy Hill Member of the Bonney Sandstone forms lowstand systems tract of the overlying
3rd order depositional sequence
. ~The sequence boundary between the two sequences forms an incised valley cutting into the
ik " Green Mudstone Member which is filled by the Patsy Hill Member

Figure 22: hummocky cross srat
cation; wave-dominated
ipper sh

Figure 28; mud drapes, horizontal
lamina; coastal plain

Figure 24:soft-sediment defor- Figure 26: soft-sediment defor-
mation; e ‘mation; foreshore

Figure 23: quartz arenite; Figure 25: lthareni Figure 27: quartz arente;

‘wave-dominated lower 10 upper
shoreface.
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Correlating Suprasalt Carapace to Subsalt Stratigraphy

Supra-salt Section:
Section M

Bonney Sandstone

Ker

Figure 33
~Correlation of carapace (Section M) to subsalt stratigra-
phy and depositional sequence stratigraphy

~Unroofing takes place when sea level begins to drop at
the end of the HST

~Patsy Hill Member was not deposited on carapace be-
cause it was subaerially exposed during the LST

Transgressive Surface

Unroofing of Suprasalt Carapace Re-

corded in HST Green Mudstone

Member in Subsalt Stratigraphy = X

Boundary

Subsalt Section:

Section E

Section F

1, 140m

Correlating Subsalt Sequence Stratigraphy to Carapace Section

Correlation Chart

Correlating Sequence Stratigraphy
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~Suprasalt vs. subsalt stratigraphy

~Carapace section deposition

e

Pinned Inflation and Unrooﬁng Mechanism for Allochthonous

g Qe

Nl
i
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Figure 340
a) ltharenite carapace; b) quartz arenite in green mudstone mbr;
¢) quartz arenite carapace; d) litharenite in subsalt minibasin

LA,

Shitone moasone

Figure 36: Sandstone litholo-
gies in minibasin stratigraphy
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a) depositional model for Proterozoic carapace
it b) depositional model for Phanerozoic carapace
) chart comparing Proterozoic vs. Phanerozoic shelfal carapace
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Conclusions

-Correlation of suprasalt and subsalt sections (14 m carapace vs. 975 m subsalt)
-Suprasalt section is ‘carapace’ according to Hart et al. (2004) defined list of attributes
-Shelfal carapace primarily formed during late highstand systems tract and was exposed
and eroded during lowstand systems tract, and forms during transgressive systems tract
-Allochthonous break-out by pinned inflation at the tip of the salt sheet associated late
highstand erosional thinning of carapace permitted by break out

-Proterozoic carapace great analog for Gulf of Mexico because lacks carbonate producers

and reef builders

Comparison of Intra-slope and Shelfal Carapce
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