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Abstract

The Pearl River Mouth Basin is situated at offshore shelf of northern part of South China Sea. Recent hydrocarbon exploration indicates that
the basin is extremely rich in hydrocarbon resources. However, stratigraphic correlation of the subsurface successions has long been disputed
due to absence of their counterparts at outcrop exposures. To improve the stratigraphic resolution for hydrocarbon prospecting and exploration
in the basin, this study attempts to undertake detailed cyclostratigraphical analysis of the lower Miocene succession, including:

1) to determine the dominant frequencies of high-frequency cycles based on gamma-ray well-logging data,

2) to test whether Milankovitch orbital signals are registered in the rhythmic succession,

3) to estimate the duration and the net accumulation rate of sequences,

4) to identify and characterize the depositional responses to global and local sea-level changes in a mixed carbonate and siliciclastic setting.
A spectral analysis will be carried out in these wells using the Fourier transform algorithm approach.

Our study indicates that three spatial periods exist in the lower Miocene successions. They vary vertically in the boreholes, but cycle ratios are
stable and similar to orbital cycle ratios (i.e., Milankovitch cycles). These three periods correspond to eccentricity, obliquity, and precession,
respectively. Since the duration of these orbital cycles are known, depth intervals in the studied wells were converted into time intervals
(duration) to establish high-resolution astrochronologic time scales which agree with established biostratigraphic chronology and the
International Stratigraphic Chart. The net accumulation rate was generated after calculating the decompaction thickness with regional
experienced algorithm. The Miocene sea-level change curves were reconstructed based on integration of biostratigraphic study of relative
abundance of planktonic foraminifera and ratio of planktonic/benthic foraminifera, sedimentary facies, astrochronologic, and sequence
stratigraphic analyses. At third-order sequence scale, the relative sea-level change curves during the early Miocene in the studied area appear to
be similar trends to the global eustatic curves (Haq et al., 1987); both have five 3rd-order rise-fall cycles. However, at higher-order cycle scale,
the direction and amplitudes of rise/fall change curves are different from their global equivalents. This disparity may be due to local or regional
tectonism.
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Location of the Pearl River Mouth Basin
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Structural evolution of the Pearl River Mouth Basin
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The sun-earth system (according to Schwarzacher, 2000)
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Astronomially

Bioevents Estimated
Thompson (2003) Error(Ma)
(FDO) Age (Ma) P
G.peripheroronda 14.919 14.8 0.119
G.sicanus 14.546 14.6 —0.054

FDO=First Downhole Occurrence



40

Sedimentation
Rate (m/Ma)

95

ND FD NA
0 60

: - 120 sequence astronomicall

FA
150 325

500

/Bioevents

ND FDNA FA

Stratigraphy Estimated

Time (Ma)

Y Global Sea-level
Change (Haqg, 1988)

2000

Lithology

2020

2040 .-

2060

2080

2100+ —

2120

2140+

2160

2180

2200

2220

150 ¢

HST

—=—mfscs

T8T

G.peripheroronda

HST
FDO

G.sicanus
——mfscs

13.839

14.546

14.742

14.919




2 0.4
O
=
()
s
w 0.2
0 | T T T T ! T T I T T | T T i | T T T T T I T T 4 T T T T T T i | T T T T T T T
13.65 14 14.25 14.5 14.75 15 15.25 18.5 5.75 15.97
illion years ago
150 il L

40 I I | I I I I [ I I
2000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200 2220

Depth (m)

The sedimentation rate compared with Laskar et al., 2004
orbital eccentricity predicted over 13.65- 15.97 Ma

Sedimentation
Rate (m/Ma)
(o]
(@)




Thank you!!!
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