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Abstract

Although mixed shallow-water platform systems containing both carbonate and siliciclastic facies are common in the geological record, the
processes that lead to this admixture and the geometries of the resulting facies are not well understood. Detailed, core-based study of two
producing oil fields in the Permian Basin (Permian Grayburg Formation) has shed important light on these questions.

We examined more than 16,000 ft of core from 54 wells in two fields along the eastern side of the Central Basin Platform. Cores were used to
define facies, stacking patterns and cyclicity and pore types. Core data were also used to calibrate wireline logs as a basis for defining field-
wide correlations and sequence architecture.

Both fields display similar assemblages of carbonate and siliciclastic facies and record a similar accommodation history. By contrast, the
abundance, distribution, and reservoir quality of siliciclastic facies (sandstone, siltstone, and siliciclastic-rich carbonate) in the two reservoirs
vary widely. In South Cowden reservoir, siliciclastics are limited to a few intervals associated with cycle-scale flooding surfaces and
transgressions and are non-porous. In North Cowden field, 20 mi (32 km) to the north, siliciclastics are locally thicker, are found in both
transgressive (TST) and highstand (HST) systems tracts, and contain significant porosity and permeability.

Essentially all of these siliciclastics can be tied to low-accommodation sedimentation associated with early TST or late HST. This association is
consistent with enhanced flux of siliciclastics onto carbonate platforms during sealevel fall and lowstand and is supported by both outcrop and
subsurface studies of other Permian successions.

Data from North Cowden field suggest two distinctly different patterns of siliciclastic bed geometries. Siliciclastics associated with major

flooding events (e.g., composite or third-order sequences) display greater continuity (along both strike and dip), although they are commonly
thinner and of lower reservoir quality. Siliciclastics associated with high-frequency sequence (HFS) flooding events, by contrast, display
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limited dip continuity but are thicker and of higher reservoir quality. In many cases they are developed as thick strike-elongate successions
immediately distal to backstepping tidal-flat complexes. These geometries may be the result of more pronounced topographic relief produced
by high rates of aggradation during HFS sedimentation.
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Data indicate two distinctly different styles of siliciclastic deposition, each associated with
distinct geometries, sedimentary features, and reservoir properties. Both reflect LST
sediment flux and TST redeposition. Low accommodation siliciclastics are associated with
tidal-flat carbonates on the inner ramp. Although displaying high continuity in proximal
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Because their deposition is related to eustasy, siliciclastic deposits are potentially very
valuable tools in sequence stratigraphic analysis. If accurately characterized, these rocks
can provide more robust insights into the architecture of carbonate successions.
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DEPOSITIONAL FACIES

Algal-Laminated
Mudstone-Wackestone

lcm

Algal laminated
dolomudstone with
anhydrite nodules. NCU

lcm )
— Algal laminated

dolomudstone with
anhydrite nodules with
contorted algal layers.
NCU 61, 4136 ft.

Algal laminated
dolomudstone. Note
disrupted algal mat in
lower part of core -
probably a storm
erosion feature. NCU
61, 4462 ft.

A Relict algal
laminae

Micropores

Algal laminated mudstone to wackestone. (A) Silty, algal
dolowackestone (stromatolite). (B, C, & D) Photos showing details
of stromatolite with micropores. B is plane-polarized light, C is cross-
polarized light, and D is UV light. NCU 502 , 4118 ft

1cm

Palmate-structure anhydrite
indicating vertical growth of
gypsum. NCU 309, 4129.5 ft.

l1cm

Nodular anhydrite within

1cm

Palmate-structure anhydrite
indicating vertical growth of
gypsum. NCU 535, 4399 ft.

dolomudstone. NCU 498, 4043 ft.

Carbonate-Dominated Facies

Tidal-Flat Facies

Pisolitic Peloidal Wackestone-Packstone

Tepee structure.
Pisoid-ooid
dolopackstone

and

dolograinstone
with ¢ement crusts.
NCU 61, 4304 ft.

1cm

Pisolitic peloidal
dolowackestone to
dolopackstone with

clasts and sheet cracks.

Deposited on sabkha.
NCU 728, 4335 ft.

Calcium Sulfate in Tidal Flats

Lom

Nodular anhydrite with very vague
palmate structure. NCU 535, 4373 ft.

Lem

Fenestral pisolitic
peloidal
dolopackstone.

NCU 544, 3996.4 ft.

Mudstone with several
vertical burrows. NCU
544, 4078.5 ft.

Sand grains

Fenestral
pores

Fenestral
pores

(A) Quartzose, peloidal-pisolitic, grain-rich dolopackstone with
fenestral pores. (B) Close-up of A showing grains. NCU 503, 4587ft.

Pisoid
Pisoid

Small pisoid
Anhydrite
cement

(A) Quartzose, very fine-crystalline, pisolitic-peloidal
dolopackstone with anhydrite cement filling. Sample from a tepee
structure. (B) Same as A in cross-polarized light. NCU 507, 3942

Mudstone

Fine- to medium-crystalline
dolomudstone with some relic mollusk
fragments. NCU 507, 4269 ft.

1cm

Mudstone with stylolites and
faint oxidation/reduction
alteration. NCU 61, 4130 ft.

Carbonate Facies Model

Ooid/peloidal/Intraclast
Packstone-Grainstone

Lem

Interbedded pisoid
dolograinstone and
muddy peloidal-ooid
dolopackstone. NCU
507, 4100 ft.

Lom
Tepee structure.
Pisoid and ooid
dolopackstone and
dolograinstone. Note
sheet cracks and

cement crusts. NCU
61, 4304 ft.

A

Moldic pore

Micropores

Intraclasts

Interparticle Interparticle
pores pores

(A) Peloidal-intaclast-ooid dolograinstone with interparticle
pores. Cemented by dolomite. (B) UV photograph of A showing
interparticle, moldic, and micropores. NCU 502, 4411 ft.

A B
Anhydrite

Pisoid

Micropores

UV photo pair showing micropores in pisolite rims. NCU 507,
4126 ft.

Inner ramp

AN\

Siliciclastic-Dominated Facies

Low Accommodation, Peritidal Siliciclastic Facies

Lem

wispy p

burrows
4064 ft.

Lom

peloi

NCU

Burrowed, quartzose,

eloidal

dolowackestone with

. NCU 878,

Burrowed,
quartzose, wispy

dal

dolomudstone.

507, 4278 ft.

Lem

Quartzose massive
dolomudstone with
skeletal molds. NCU
381, 4370 ft.

Quartzose
Mudstone-Wackestone

Quartz
grains

Peloids

0.2_mm

(A) Quartz-rich peloidal

dolowackestone. (B) Same as
A'in cross-polarized light. NCU
507, 4278 ft.

Quartz
Sandstone-Siltstone

0.5mm

9-17_4409 Por: 6.2%; k: 0.08 md
Dolomitic quartz sandstone. SCU
9-17, 4409 ft.

1cm

Rippled quartz
sandstone. Note
suspension bedding
and truncation by
burrowed sandstone.
NCU 937, 4228 ft.

Burrowed, dolomitic quartz
sandstone. Sandstone represents
cycle base overlying carbonate tidal-
flat facies NCU 66, 3980 ft.

Cycle Top

Higher Accommodation, Subtidal Siliciclastic Facies

Lem

Cross-bedded
guartz sandstone.
NCU 496, 4254 ft.

Cross-bedded Sandstone-Siltstone

lcm

Rippled quartz

sandstone. Abundant

anhydrite cement.
NCU 535, 4355 ft.

Lom

Cross-bedded
quartz sandstone
with abundant
anhydrite cement.
NCU 381, 4267 ft.

Lem

Massive anhydrite-
cemented quartz
sandstone. NCU
502, 4244 ft.

A B
Dolomitized Moldic Interparticle i
grains pores pores ",4'8:2'5
Interparticle
pores
0.2mm 0.2mm
-_— -_—

Quartz siltstone and sandstone (subarkose): (A) Very fine- to
fine-grained subarkose with anhydrite cement. Note abundant
interparticle pores and minor moldic pores. Cross-polarized light.
(B) Same as A in UV light. NCU 502, 4247 ft.

B

Interparticle
pores

L\

Dolomitized
grains

O.2_mm O.2_mm

Quartz siltstone and sandstone (subarkose): (A) Very fine- to
fine-grained subarkose with dolomitic peloids and minor anhydrite
cement. Pore network of interparticle pores. (B) Same as A in UV
light. Note pores. NCU 502, 4241 ft.
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DIAGENETIC FABRICS

Karst/Dissolution Fabrics

lcm

Karst Breccias: (A) Breccias at top of large vug.

NCU 976, 4695 ft. (B) Distorted sediment within vug 1em
may indicate the brecciation occurred while sediment —
was firm and not totally lithified. This would indicate
near-surface dissolution and collapse. NCU 976,
4714 ft. (C) Laminated quartz-sand fill within vugs,
suggesting that dissolution was early and shallow.
NCU 976, 4718 ft. (D) Mosaic breccias near base
of the large vug. Interclast pores filled with anhydrite
cement. NCU 976, 4723 ft.

Karst Breccias: (A-C) Breccia clasts with interclast
anhydrite cement. NCU 544, 4286 - 4290 ft.

Anhydrite Dissolution Fabrics

Sulfate Diagensis

o
6-20_4580 Por: 14.0%; k: 2.02 md
0.5 mm
Dolowackestone with partly
leached anydrite. . Note that
poikilotopic anhydrite has been
removed from one side of the thin
section. SCU 6-20.
0.1 mm
6-20_4627 Por: 11.9%; k: 1.81 md

Grain-rich dolopackstones with
areas of altered (bassanite) and

Peloidal fusulinid dolopackstone.
leached anydrite. SCU.

Note that anhydrite has been
removed from both nodules and
fusulinid molds by late stage
dissolution. SCU 6-20, xxxx ft.

Burrow-related Dolomite Diagenesis

Burrowed peloidal fusulinid
dolopackstone. Alteration of
dolomite around burrows has
resulted in a twofold increase in
porosity and an order of magnitude
increase in permeability. SCU 6.20.




DEPOSITIONAL ARCHITECTURE GEOMETRIES AND DISTRIBUTION OF SILICICLASTICS CONCLUSIONS

C I Yoy S S I h . . : ili~s : : . li~: . 1. Siliciclastic deposits in carbonate successions can exhibit wide
yclicity equence Stratigrapny High Accommodation, Distal Siliciclastics Low Accommodation, Proximal Siliciclastics et o eamet (o himnese. oo
facies, and reservoir quality.
: These siliciclastic deposits accumulate on the middle to outer shelf during LST and the ensuing TST. They are typically strike-elongate, their updip limits Low accommodation siliciclastics accumulated on the inner ramp and are invariably associated with tidal-flat
A South Cowden Field A controlled by more proximal, ramp crest and/or tidal flat topography. They are thickest near this updip terminus and thin downdip. Because of their higher carbonates. Because of the generally flat-lying topography, they are highly continuous over large areas. These 2. Many of these differences are tied to variations in depositional
High-frequency cycles (or repeated facies successions) are observed in cores in both field West East accommodation setting, they are typically better sorted. rocks are typically more poorly sorted and clay-rich due the low-energy setting.. accommodation across the platform.
areas. Cycles commonly range from 10 - 15 ft |n.th|ckn§s.s but are most readily defined where S oss 157 T T Unocal Hoss Ut 6.1 e e O c _ . _ _ _
facies contrasts are greatest. At South Cowden field, this is largely limited to ramp crest areas. - \ @R \ R \ @R \ @R v @R \ 8 _ _ _ 3. Low accommodation siliciclastics accumulated in low-energy, inner-
Correlations of carbonate facies and cycles are problematic, however. S North Cowden field North Cowden field South Cowden field ramp settings and are associated with tidal-flat carbonates. Although
o of high continuity, they are commonly mud-rich and exhibit poor reservoir
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