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Abstract

The recent delta asymmetry models predict sandy shoreface facies on the updrift side and muddier heterolithic lagoon, bay-fill,
and barrier/bar facies on the down drift side. These models, however, are largely distilled from modern systems. Studies
evaluating their validity in the ancient record are very limited. The Turonian Ferron “Notom” delta in the Capital Reef area of
southern Utah, USA, is exposed three dimensionally along a 45 km by 30 km outcrop belt. This provides an ideal opportunity
for further testing the asymmetry models.

Thirty-four geological sections documented the 3-D architecture of parasequence 6 in the fluvial-deltaic complex. The
parasequence consists of four facies successions and along depositional strike, these show distinct transition from shoreface
deposits in the north, into heterolithic, river-dominated delta-front and channel and/or mouth-bar facies south and
southeastward, and wave-/storm-reworked delta-front facies farther southeastward. Ichnogenera suites correspondingly show
distinct along-strike changes from robust and healthy expressions of the Cruziana and Skolithos Ichnofacies, into suites
characterized by horizontal, morphologically simple, facies-crossing structures. Farther southeastward Ichnogenera abundance
and diversity increase, reflecting the archetypal suites.

The overall facies distribution in the parasequence suggests delta asymmetry. Different from the recent delta asymmetry
models, however, significant muddy paralic, lagoon, and bay-fill facies are not identified on the downdrift side. The lack of
these facies is attributed to: 1) a negative paleoshoreline trajectory during delta progradation as indicated by the occurrence of
sharp-based proximal shoreface successions on the updrift side and the overall downward- and basinward-stepping of the
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studied parasequence with respect to its previous ones; and 2) subsequent transgressive erosion as shown by the decimeter
thick transgressive lag overlying the parasequence.

The observations suggest that, depending on shoreline trajectory and reworking after deposition, facies of asymmetric deltas
can be different from those predicted by the asymmetric models. Future studies, thus, need to involve paleoshoreline trajectory
and depositional history into these models.
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Early deltaic models

Wave-influenced deltas

e arcuate to cuspate;
 sediments derived directly
from the feeding river;
* homogeneous sands.
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Study area
and
data set

e 73 sections total
* 34 to cover the studied
parasequence
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Robust & healthy expression of the
Cruzianaichnofacies in lower shoreface
“muddy sandstones
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Asterosoma (As), Thalassinoides (Th), Chondrites (Ch),
Planolites (Pl) and Palaeophycus (Pa)



Rlver-domlnated delta front
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Planolltes (PI), Teichichnus (Te), Phycosmhon (Ph), fuglchnla(Fu) Rosselia (Ro) and “ mantle and swirl” structures (MS).

* Ichnogenera: low diversity and abundance;

e Overall low bioturbation, with high spikes;

 MS structures, sediment-swimming of organism in soupy substrata;
e Erosional truncation indicates emplacement of hyperpycnal flows.
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- Transgression

= Muddier and heterolithic, typical unidirectional flow

induced structures;

» Low diverse suppressed ichnogenera;

» Dominated by facies-crossing, morphological-simples
ichnological structures

Strongly wave-influenced Shoreface
» Typical storm wave-induced structures;
* Diverse, healthy, and robust ichnogenera




wave~rework delta front,
planar/wavy bedding
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Ichnogenera in wave-reworked distal
delta ﬂ-ont (dDI‘)

Thalassinoides (Th),
Diplocraterion (Di),
Planolites (Pl),
Chondrites (Ch) ,
Palaeophycus (Pa),
Rosselia (Ro) ,
Fugichnia (Fu)
“mantle and swirl’’
structures (MS).

a low-diversity, proximal expression
of the Cruziana ichnofacies

(B)

Planolites (Pl),
Palaecophycus (Pa),
Thalassinoides (Th),
Teichichnus (Te),

Rosselia (Ro),

Phycosiphon (Ph),
Chondrites (Ch)

a more healthy expression of the
Cruziana ichnofacies




Along-strike facies transition

Approximate depositional strike
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Four major facies types

FAC1: shoreface
FAC2: active delta front

FAC3: wave-reworked delta front

FACA4: distributary/mouth bars

0 Kilometers 10



Ichnological response to
different physico-
chemical processes

Depositional Environments
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Paleogeographic reconstruction and
comparison with modern examples
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Facies of asymmetric deltas as a
function of shoreline trajectory

Shoreline trajectory End of delta progradation After transgressive erosion

—7  Shoreline trajectory
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Progradation of PS6 under minimal
accommodation!
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Conclusions

N=123

"7 Fluvial channel course

1. The studied parasequence 6 (PS6) shows delta asymmetry. The asymmetric
delta is fed both by the trunk river flowing NE and by longshore transport from the
NNW to the SSE.

2. Ichnogenera shows distinct along-strike
changes in response to physico-chemical process
In the asymmetric delta, and ichnological analysis
Is effective to identify river influences.

Shoreline trajectory End of delta progradation After transgressive erosion

(€

3. Using the asymmetric delta models in the
ancient record should incorporate regional
stratigraphy and paleoshoreline activity, both of
which could control the overall deltaic facies.




Exploration significance
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ESTUARY
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 Clean sands updrift
— Potentially sharp-based shoreface deposits.
* Heterolithic facies downdrift ; VN srorsnty  Updrift
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