PS Outcrop Lithostratigraphy of the Middle Devonian Marcellus Interval in West Virginia, Pennsylvania and Virginia*

Margaret Walker-Milani¹, Kyle Littlefield², Richard Smosna², and Timothy Carr²

Search and Discovery Article #50398 (2011)
Posted March 31, 2011

*Adapted from poster presentation at AAPG Eastern Section Meeting, Kalamazoo, Michigan, September 25-29, 2010

¹Department of Geology and Geography, West Virginia University, Morgantown, WV 26505 (mwalkerm@mix.wvu.edu)
²Department of Geology and Geography, West Virginia University, Morgantown, WV 26505

Abstract

The Middle Devonian Marcellus Shale is part of a large emerging unconventional shale gas play in the Appalachian Basin. This unconventional gas reservoir is distributed widely across the basin and has significant economic potential. Although the Marcellus interval is presently being drilled throughout the basin, several uncertainties remain including the definition of stratigraphic units, distribution and controls on organic richness, depositional patterns, and petrophysical characteristics. Surface exposures of the Marcellus Shale were measured, described and logged with a spectral gamma-ray scintillometer at several localities in the outcrop belt including parts of Pennsylvania, West Virginia, and Virginia. The spectral scintillometer was used to correlate surface exposures to nearby subsurface data and to construct cross-sections from the outcrops to the subsurface. Detailed outcrop description tied to petrophysical data has allowed for a better understanding of the depositional history and economic potential of the Middle Devonian Marcellus Shale in West Virginia and throughout the Appalachian Basin.

Reference

ABSTRACT
The Middle Devonian Marcellus Shale is part of a large emerging unconventional shale gas play in the Appalachian Basin. This unconventional gas reservoir is distributed widely across the basin and has significant economic potential. Although the Marcellus interval is presently being drilled throughout the basin, several uncertainties remain, including the definition of stratigraphic units, distribution and controls on organic richness, depositional patterns, and petrophysical characteristics. Surface exposures of the Marcellus Shale were measured, described, and logged with a spectral gamma-ray scintillometer at several localities in the outcrop belt including West Virginia and parts of Pennsylvania. The spectral scintillometer was used to correlate surface exposures to nearby subsurface data and to construct cross-sections from the outcrops to the subsurface. Detailed outcrop description tied to petrophysical data has allowed for a better understanding of the depositional history and economic potential of the Middle Devonian Marcellus Shale in West Virginia and throughout the Appalachian Basin.

CONCLUSIONS
To date, a total of fifteen Middle Devonian Marcellus shale outcrops have been studied in West Virginia and Pennsylvania. Outcrops have been measured, described, and logged with a handheld spectral gamma ray scintillometer. These detailed examinations have resulted in the recognition of six distinct lithofacies within the Marcellus Shale formation, including: 1) Gray Calcareous Shale, 2) Limestone, 3) Gray Shale, 4) Black Calcareous Shale, 5) Non-Calcareous Black Shale (4) and 6) Mixed Lithology. Zones from the Tioga Ash, the latter of which have been dated using the Sensitive High-Resolution Microprobe at Stanford University. Average rim ages are 389.9 ± 2.6 Ma, consistent with Middle Devonian emplacement. Future work includes detailed descriptions of additional outcrops in West Virginia, a compilation and classification of lithofacies descriptions, and an interpretation of the depositional environment for each. Additionally, applying these characteristics to a sequence stratigraphic framework will identify how the Marcellus depositional environment changed through time and aid in the construction of a generalized stratigraphic column for the complete Marcellus section within West Virginia. Division of the Marcellus into members with recognizable spectral gamma-ray characteristics will allow the correlation of outcrop lithostratigraphy to nearby subsurface spectral gamma-ray logs.

REFERENCES

ACKNOWLEDGEMENTS
Funding for this project was provided in part by URS Corporation, in conjunction with the U.S. Department of Energy, National Energy Technology Laboratory. Geochronologic analyses provided by Dr. Jaime Tom, GSI Data obtained from the West Virginia GIS Technical Center and Pennsylvania Spatial Data Access–Networksaw as well as the URS. This project benefited greatly from the input of Katherine Lee Avary, Dr. Katherine Bruner, and Gordon VanSwearingen at U.S. DOE, the National Forest Service, and the multitude of private landowners that made this research possible.

Figure 1: Fifteen Marcellus shale outcrop locations (red). Featured outcrops: (1) Wip Gap, (2) Bedford. Figure 2: Regional stratigraphic column (after Milici and Swezey, 2006). Covered Section: 3.5'. Figure 3 & 4: Stitched outcrop panorama with gamma overlay (above), and corresponding graphical descriptions and facies identification (below).

Figure 5: Spectral gamma collected with RS-230. Covered Section: 3.5'. Figure 6: Outcrop photo with total natural gamma overlay.

Figure 7: Graphical descriptions and lithofacies identification.

Figure 8: SEM backscatter of Tioga ash, with drill locations (top). U/Pb ages of ash rim (bottom). Courtesy of Dr. Jaime Toro.