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Abstract

The observation that shallow-marine carbonate strata often have exponential lithofacies thickness distributions is one of the most fundamental
results in carbonate stratigraphy in recent years. This is both because it is an observation that can be tested for its repeatability in outcrop and
subsurface examples, and also because it raises the question of what sedimentary processes lead to the formation of particular lithofacies
thickness distributions. This in turn links to the significant issue of how carbonate strata record climatic and oceanographic change through
geological time.

This study applies a simple 1D numerical stratigraphic forward model of carbonate platform strata (Dougal) to investigate how relative sea-
level oscillations could control lithofacies distribution. Dougal records platform-top carbonate accumulation influenced by water-depth
dependent sediment production in euphotic, oligophotic and aphotic production profiles with a lag-depth controlling onset of production.

Results from single model runs highlight the issue of non-stationary behavior where statistical properties of the strata change with elevation up
the section, and show that exponential lithofacies thickness distributions can be generated from an entirely deterministic model. Results of
multiple model runs (more than 27,000 in total) spanning a range of production and accommodation creation rates, demonstrate that the
accommodation and sediment supply do act as major, though non-linear, controls on carbonate lithofacies distribution, but significantly that
lithofacies distributions also have an autocyclic control through oscillations in deposition during certain high-frequency rising limbs on the
glacio-eustatic curve. In these multiple model runs only about 13% of the total runs created exponential distributions, compared to 28% in the
documented outcrop examples, also suggesting that other processes, including three-dimensional process not included in this model, play an
important role.
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In addition to providing some understanding of the nature of lithofacies thickness distributions under varying oceanographic and climatic
regimes, the findings presented here have broader implications. This is particularly true where lithofacies thickness has an impact on the
performance and productivity of hydrocarbon reservoirs, such as economically-important platform and ramp interiors in both icehouse and
greenhouse settings.
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* Information contained in lithofacies thickness distributions could prove useful for
subsurface prediction — use SFMs to begin to understand the processes
* Three main factors appear to favour formation of exponential lithofacies thickness
distributions in the 27,205 model runs performed for this study.
" Complex variations in the rate of creation of accommodation
= Rate of sediment production
= ———= = Lag-depth oscillations
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calculates spatial evolution of lithofacies B norces 1 [l Lthorcesa Initial trials suggest exponential deterministic model.
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