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Abstract

Basins containing salt frequently display a complex geodynamic evolution characterized by several phases of halokinesis and associated
sedimentation. Our approach to salt basins combines seismic, structural and sedimentary studies with analysis of rheological properties and
geomechanic modelling. We illustrate these concepts with case studies from Permian Salt Basins in Europe and Precambrian to Paleozoic Salt
Basins from the Middle East. One classic area of salt tectonicsis the Central European Basin System (CEBS). Here, the mobile Permian
Zechstein salt formed alarge number of salt structures such as anticlines, diapirs, pillows, sheets, stocks, and walls during an extended period
of salt tectonic activity in Mesozoic and Cenozoic times. Salt-influenced sedimentary responses to renewed phases of tectonism can be clearly
discerned from detailed sequence analysis based on seismic and log data combined with retrodeformation modelling studies. Late Paleozoic
sedimentation in the CEBS deposited Upper Rotliegend sedimentsin a series of fluvial, eolian, playalake and sabkha settingsin an
extensional regime. About 800 m of bedded sulfate and halite were deposited in the study area during the hydrographic isolation and
drawdown of the Late Permian Zechstein evaporite basin. High quality 3-D seismic data integrated with structural modelling improves the
definition of salt structure and associated sediment architecture in salt-controlled sequences. Paleo-cap rocks inside the diapirs point to long
phases of dissolution. Salt wedges formed by extrusion and lateral flow of salt glaciers during periods of diapir emergence and reduced
sediment accumulation can be accurately modelled. Although salt iswidely regarded as a perfect seal, it can become permeable for one- or
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two-phase fluids under certain conditions of fluid pressure, temperature and deviatoric stress. The fluid pathways can be either along zones of
diffuse grain-boundary dilatancy, or along open fractures, depending on the fluid overpressure and deviatoric stress. The fluid can form halite
veins or networks of brine-filled grain boundaries which conduct fluid from primary inclusions during recrystallization. The main criterion for
thisto occur is the presence of near-lithostatic fluid pressures.

In the second part of our study, we focus on the large-scale internal geometry of salt structures. These are often represented in two strikingly
different ways. In studies using 3D seismic and well data that focus on the sub-or suprasalt sediments, the evaporites are shown as
homogeneous bodies. On the other hand, studies of the internal structure of salt show the extremely complex internal geometry with much
less attention to the structure of the surrounding sediments. Numerical models of salt tectonics also tend to assume relatively homogeneous
rheological models and, consequently, produce relatively simple internal structures. New devel opments in microstructure analysis, combined
with 3D seismic study of complex internal structuresin salt form the basis of integrating these two. A review and synthesis of the mechanical
and transport properties and their extrapolation to relevant strain rates must be based on an understanding of the microscale deformation
mechanisms in natural |aboratories and measurement of salt flow in-situ. Dislocation creep and grain boundary dissol ution-precipitation
processes, such as sol ution-precipitation creep and dynamic recrystallisation, play a significant role. The switch between these processes can
cause major changes in rheology, at time-scales both relevant to geologic evolution and subsurface operations. New methods of
microstructure analysis based on microstructure decoration, orientation analysis and trace-element geochemistry, combined with

pal eorheology indicators based on structures observed in natural laboratories, allows an integration of these data and the devel opment of a
unified model for salt creep and prediction of regions where high fluid pressures led to a dramatic increase in permeability, strongly reducing
sealing capacity. Many evaporite deposits contain brittle-ductile claystone, carbonate and/ or anhydrite layers enclosed in salt. Although these
stringers can be reservoirs for hydrocarbons and can pose serious operational challenges, little is known about the early evolution and
deformation history of these layers. 3D seismic study of these, combined with well data and core analysis of diagenetic evolution, shows
highly complex structures caused by both brittle and ductile deformation, in good agreement with observations in salt mines, and forms the
basis of a new generation of mechanical models to investigate the complex coupling between the internal deformation of the salt and the
evolution of the surrounding sediments.
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KKKKKK Urai et al. 2010. Salt Tectonics, Sediments and Prospectivity, The Geological Society, Burlington House, Piccadilly, London.
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Presenter’s Notes:

Salt terranes are complex; some are more complex than others. From an economic point of view, they constitute plays which cannot
be simply put into one pigeonhole (structural, stratigraphic etc.).

From studying salt terranes over the last decade, we think that both macro- and micro-scale studies are needed to handle the
complexities associated with salt terrains.

The first part of this article (presentation by Peter Kukla) covers the blue circle - the macroscal e aspects, such as Seismic
Interpretation.

The second part of this article (presentation by Janos Urai) presents our approach to studying the internal deformation of salt, covering
aspects seen along the orange circle.

Two studies intended to demonstrate the importance of an integrated macro-scale analysis are presented. It is especially the geometric
and kinematic restoration, together with other information, which provides the input for micro-scale analysis and numerical modelling

of internal deformation.



Salt tectonics in mixed terranes

Permian Zechstein in the Central European Basin
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Presenter’s Notes: From a salt tectonics point of view we know that salt structures are commonplace in extensional terranes (rifts, passive margins - -GOM type)
and compressional terranes (e.g., Zagros Namakiers)

A third type are mixed terranes, and one of the classic ones we can see here is the Permian in the CEB.

I illustrate our approach and key findings in such a complex terrane in the following slides.
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Presenter’s Notes:

The availability of high-resolution 3D seismic surveysin recent years has greatly improved our understanding of the onshore Permian
Zechstein basin.

One example from an area separating the Lower Saxony Basin and the Pompeckj High along one of the major NW-trending
lineaments extending into the North Sea Basin, is shown here from our study group involving Potsdam/Aachen/Hannover. Tina Lohr
has been able to show the relations given above.

In decoupled areas deformation occurred only within post-salt units, leading to different deformation styles in the same area (as
shown in the Central Fault Zone); the most prominent normal fault detached along a Middle Keuper salt layer, and soled out into the
Zechstein salt (E). The main graben fault proceeds into several imbricate listric normal faults, building aroll-over anticline and
tilted blocks.

In coupled areas deformation occurred in both post- and pre-salt units, and is characterized by strike-dlip faulting (white circles).

Thrusting of Mesozoic sediments (imbricate thrusts) occurred contemporaneously with the oblique thrusting (positive flower
structure) of Upper Permian sediments during the Late Cretaceous.

The heterogeneity in distribution and timing of deformation is controlled by different reactivation of pre-existing faults depending on
their orientation, and by salt distribution. These factors led to stress perturbations and therefore local strain partitioning; areas with
greater salt thickness triggered a decoupling of the stress field between pre- and post- salt units.



Salt tectonics in changing regional stress fields
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Presenter’s Notes:

A little farther to the south in the Emsland area at the SW-margin of the CEB, aregional study aimed at deciphering the geometry and
the kinematics of a section east of the Groningen block in NL.

The regional section includes a salt diapir, salt walls, salt sheets, rafted blocks and mainly decoupled basement as well as a partly
faulted overburden (at top of diapir A).

In the course of this project, detailed interpretation, facies analysis, well data analysis and retrodeformation modelling occurred.

Database:
10 x 13 km 3D seismic cube
Network of 28 depth-migrated 2D sections

11 deep exploration wells - log data



Seismic interpretation and model visualisation
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Presenter’s Notes: Attribute volumes (coherency (variance) maps here) from the 3D surveys were calculated and subsequently interpreted for structure, salt
geometries and depocentre evolution and migration through time.

At this stage | show just one slide with the deformation of the pre-salt at top Rotliegend and the evolution of a depocentre in the Middle Triassic Keuper, with
more images to follow.



Late Triassic salt glaciers

Geological
coherency map interpretation 3D seismic
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Kukla, Urai et al. 2010. Salt Tectonics, i and ivity, The ical Society, Burlington House, Piccadilly, London. @E "‘-"\"7:?5#
Presenter’s Notes: A further feature observed from careful screening of the 3D survey was a Late Triassic (Keuper) salt glacier, the first of its kind reported
from the German subsurface.

This confirms active salt dynamics during tectonism in the basin.




Late Triassic salt glaciers
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Presenter’s Notes:
Selected 3D seismic sections with geological interpretation highlighting (in blue) the Permian and Triassic salt unitsin the CEB.

» The Mesozoic of the area has thick inter-layered salt sequences. Especially in the Late Triassic we observed up to 800-m-thick
primary salt deposits (in the rim-synclines from seismic and borehole data). Their role to date has not been considered strongly
for salt dynamics purposes.

* Thethickness of the bedded salt units corresponds well to the structural rim-syncline evolution of the diapirs.

* We suggest that salt dissolution from the diapir and brine supply to the landscape enabled accumulation of high salt volumesin
the rim-synclines.



Tectono-sedimentary analysis of diapir flanks | Clicktoview Presenterslotes
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Presenter’s Notes:

» Geological interpretation (lowermost) shows four sedimentary wedges of Keuper age and the salt flanges of adiapir. The
wedges of Middle Keuper 1 and 2/3 show |low-angle unconformities and onlaps on the narrowing diapir.

» During detailed tectono-sedimentary analysis at the SW flank of a salt diapir we place salt and sediment dynamicsin a
sequence-stratigraphic context interpreting the sediment/sediment interfaces not with a classical marine/nonmarine
(Milankovitch-controlled) mechanism but with different trigger mechanisms, namely, tectonics and sediment supply.

» Therateof salt rise versus sedimentation accumulation controls the geometries.
Accordingly, the unconformities at the base of the sedimentary wedges represent er osional-event sequence boundaries:

* Lowstand Systems Tracts. erosional unconformities, salt dissolution or minor sedimentation and salt extrusion of an
expanding diapir. The salt flanges were formed during constant salt rise and extrusion on the land surface with no sediment
accumulation.

* Deposition during the Transgr essive Systems Tract causes sedimentary onlapping on aretreating diapir.

* During the Highstand System Tract the diapir can be overstepped by sediment.



Retrodeformation study - summary
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Three-stage salt tectonic evolution: uiaeta

Each phase of salt movement was initiated by regional tectonics

1. Early Triassic extension (NE-SW faulting) — rafting, initial salt diapirism (Middle Buntsandstein),
differential sedimentation, lateral salt flow & pillow growth

2. Late Triassic extension (NNW-SSE faulting) — reactive diapirism, breakthrough, extrusion of salt
to the surface, structurally autonomous downbuilding process

3. Beginning Cretaceous to Early Tertiary - compression & inversion tectonics,

reactivation of salt movement and diapir shortening © ==
Kukla, Urai et al. 2010. Salt Tectonics, i and ivity, The ical Society, i House, Pi illy, London. UNIVERSITY

Presenter’s Notes: A next step to understand the dynamics of the system is to retrodeform sections--to unroll sequentially the structural evolution including
strain rate quantification.

Modelling is, in principle, back in time, starting at the present section. To have a look at the sequence of events it is better to start sequentially from older to
younger.
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Revision of tectono-sedimentary model applying modern salt tectonics concepts to this area
Distinguish several deformation phases and styles

Established a halokinetic stratigraphy

Identification of subsurface glacier on seismic

Revision of exploration concepts

— Pressure / Temperature / Fluid conditions affecting salt basins

abrwbdE

Kukla, Urai et al. 2010. Salt Tectonics, Sediments and Prospectivity, The Geological Society, Burlington House, Piccadilly, London.



Presenter’s Notes:

Maps of vertical thickness and regional stress (4th column), derived from interpretation and retrodeformation.
Approach confirms depocentre migration changes of structural trends through time and thus demonstrates the multistage evolution of
the study areain the CEB.

Red colors = thickness maximum.

Light brown colors = thickness minimum of the particular units.

Summary Permian Basin Study: Based on new 3D data we have been able to:
1. Revise the tectono-sedimentary model applying modern salt tectonics concepts to this area.
2. Distinguish severa deformation phases and styles.

Develop a halokinetic stratigraphy.

Eal

Identify for the 1st time a subsurface glacier on seismic.

5. Changed exploration concepts.
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Presenter’s Notes: Southern Oman with 3 major salt basins which developed during the Late Proterozoic and which are known from elsewhere in the
Middle East. Neoproterozoic assemblage of clastics, carbonates and salt sequences.
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Presenter’s Notes:

In order to cover some of the aspects just mentioned and leading to the following part of the article (presentation by Janos Urai) the
the Neoproterozoic salt basins of Oman are considered.

— There, a system which has much similarity with parts of the North Sea, but that will not be illustrated at this point in time.

Southern Oman with 3 major salt basins that devel oped during the Late Proterozoic and which are known from elsewhere in the
Middle East. Neoproterozoic assemblage consists of clastics, carbonates and salt sequences. We study the surface diapirs and the ones

buried and producing from 6 km depth.

We interested in this because of surface-piercing diapirs; these have brought to the surface an interesting mix of lithologies which

have suffered severe tectonism (see Qarn Nihayda) —
In the next dide: black stained salt and bitumen.



Neoproterozoic salt basins in Oman
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Presenter’s Notes: Black stained salt and bitumen.




Salt flow concepts Click to view Presenter'slotes|
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Presenter’s Notes:

One aspect not noted to this point is the Pressure/ Temperature/Fluid conditions which impact greatly the salt kinematics.
We have seen in the last decade, as well as during this conference) that salt-flow concepts have been changing.

Displayed in the lower images are boudinaged brittle carbonate/anhydrite rafts (called stringersin Oman) moving in salt and
developed from anisotropic strain effects during downbuilding/differential loading.

This may be compared with brittle pegmatite floaters with tilted joint blocks overlying soft marble (example from Janos Urai from
Greece)



Black salt and bitumen
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Presenter’s Notes: Observations from drilling: black salt.
Salt might not be the excellent seal we anticipate it to be: salt can actually dilate, as seen in the Ara Salt Basin where sections of more than 10-m thickness

may contain hydrocarbons and bitumen.



Paleotemperatures
Paleo-temperatures (°C)
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Presenter’s Notes: Paleotemperature analysis on this bitumen show a widespread (and support a) high-temperature hydrothermal event which must have

contributed to the pressures observed.



Overpressures in the SOSB

Formation pressure (MPa)
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Presenter’s Notes: We are interested in this basin because of an interesting overpressure distribution!
In the SOSB, the Ara carbonate stringer reservoirs show two pressure populations: one at hydrostatic pressures (black circles) and one at near lithostatic
pressures (grey circles).



Pressure modelling
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Presenter’s Notes:

Pressure modelling in 1D and 3D confirms early evolution of elevated fluid pressuresin the host lithologies and a significant
contribution by kerogen maturation.

Model runs of the presently hydropressured wells led in all cases to the development of overpressures.

K Sl Info (2005) on calculation of kerogen sour ce term:

Currently, thisterm is calculated in afairly ssimplistic way. Thereis adefault temperature vs. generation rate relationship for three
fractions: Oil, Gas and Cracked Gas. Y ou can see this on the model Editor if you click on the Kinetic Model tab (extremeright). The
amount that is subjected to this calculation is varied by changing the parameters for any specific unit. Thisisin the calibration step.

In this year's programming, we are adding in the code the ability to vary the kerogen by type, HI, and TOC.



Seal Integrity — halite dilatancy Click to view Presenter'slotes
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Presenter’s Notes:

Diagram showing the dilatancy boundary for halite in the differential stress vs effective stress space, derived from laboratory
experiments by Popp et al. (in attempts to explain the pressure and hydrocarbon distribution and the sealing capacity of the rock salt).

Above this boundary salt behaves dilatant, whilst below the boundary dilatancy and hence the formation of permeability is suppressed
by compaction.

Lowermost right: Paleo-stress analysis of the Ara Salt using subgrain size piezometry indicates maximum past differential
stresses of lessthan 2 M pa (see arrows). Under such low differential stress conditions dilatancy only occursat near zero
effective stresses, i.e., at fluid pressures closeto sigma 3.

Here, this argumentation is only valid for single phase flow of brinein salt, but as we have seen from the microstructures, thereis also
solid bitumen, which *“used to be” ail.



Leakage conditions of rock salt in the SOSB
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Presenter’s Notes:
Leaking conditions of rock salt - Diffuse dilatancy.

General: the microstructure of Ara salt shows clear evidence for dilation by diffuse grain boundary microcracking and intragranular
microcracking.

a) According to the model of Lewis & Holness, (1996), we must assume that the Ara Salt originally had a connected pore-fluid
topology. SOSB depths, temperatures (solid bitumen reflectance) and dihedral angles match that model (see our PT datain black
dot).

b) No leakage occurs as long as the oil pressure in the stringer (black dot) equals the fluid pressure of the salt, which is at sigma 3.

c) If the il pressure slightly exceeds the fluid pressure in the salt, the oil displaces the brine by the capillary entry pressure (Pc). Then,
the halite grain boundaries start to open, causing the formation of a diffuse dilatancy. This condition can be described by Pyine in salt =
o3 and Py = o3 + Pc. The sealing capacity of halite in the deep subsurface is exceeded, if this condition is met. Assuming a pore throat
radius of 0.05 pm, then the Pc of rock salt is0.1 MPa. At this pressure, oil will displace the brine in the triple junction tubes and
in grain-boundary inclusions, which in turn dilates the halite grain boundaries, leading to diffuse dilation of the halite grain
fabric.

When oil pressure equals the brine pressure again, the sealing capacity is restored and salt will seal again.



Conclusions

« Integrated approach of linking seismic
techniques with structural restoration
techniques, sedimentary sequence analysis
and geomechanical analysis unravels a
complex, multiphase salt tectonic evolution
in the course of changing stress fields
in ancient evaporite basins.

(NASA, MrSID Image

« Salt deforms as a viscous fluid Server, see also
and is driven by differential fluid pressure. Jackson et al. 1990)

« Diffuse dilatancy is considered a major mechanism for fluid flow and

loss of sealing capacity in major evaporite basins and generally in
the lower crust.

© o RWTHLCE
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Internal structure of salt bodies - who cares?
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Salt topseal strength
Drilling problems

Storage caverns, salt mining
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Internal structure of salt bodies - who cares?
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Internal structure of salt bodies - who cares?

Topseal strength, Drilling problems, Storage caverns, Salt mining
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Z3 stringer folds, Groningen area - Heijn van Gent 2009

stringer




Ductile deformation of salt - constant stress
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Power law creep rheology
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Rock salt deformation mechanisms
DISLOCATION CREEP

dislocations,
subgrains

water assisted

e dynamic
1 mm recrystallization
PRESSURE SOLUTION PLASTICITY, MICROCRACKING

grain boundary sliding, dissolution crystal plasticity, microcracking
precipitation, no Xtal plasticity dilatancy, permeability increase

Urai et al. 2008, Springer % CE m[wmugu
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Gamma - Irradiation

000000000
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000000000

35°C - dose rate 1 - 3 kGy/h 100 °C - dose rate 4 - 6 kGy/h
total dose about 1.5 MGy total dose about 4 MGy

Schleder and Urai (2005) Int. J. Earth Sciences

Kukla, Urai et al. 2010. Salt Tectonics, i and ivity, The

Society, Burlington House, Piccadilly, London. e
Presenter’s Notes: Gray (Gy)A unit of absorbed dose of ionizing radiation. The dose is 1 Gray when the density of the total energy absorbed, in any medium

from any type of ionizing radiation, is 1 Joule/kg. The dose can be expected to vary from point to point within the irradiated object. radA unit of absorbed dose
of ionizing radiation. 1 rad = 10 milligray.




Rock salt deformation mechanisms
DISLOCATION CREEP

dislocations,
subgrains

water assisted

e dynamic
1 mm recrystallization
PRESSURE SOLUTION PLASTICITY, MICROCRACKING

- ; -1

grain boundary sliding, dissolution crystal plasticity, microcracking
precipitation, no Xtal plasticity dilatancy, permeability increase

% E RWTHAACHEN
Kukla, Urai et al. 2010. Salt Tectonics, Sediments and Prospectivity, The Geological Society, Burlington House, Piccadilly, London. UNIVERSITY



Subgrains in naturally deformed rock salt
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Subgrain size piezometry
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Rock salt diapiric flow : dislocation creep and pressure solution
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In agreement with rock mechanics tests & microsctructure & movement rates of
diapirs (Mukherjee et al., 2010)
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Rock salt deformation mechanisms

DISLOCATION CREEP

dislocations,
subgrains

water assisted

e dynamic
1 mm recrystallization
PRESSURE SOLUTION PLASTICITY, MICROCRACKING
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grain boundary sliding, dissolution crystal plasticity, microcracking
precipitation, no Xtal plasticity dilatancy, permeability increase
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Pressure solution creep
Diffusion Control:

[DCS]X_de )

Spiers et al., (1996- 2007) University Utrecht
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Glacier salt microstructure

Talbot 1979; J. Structural Geology

Schleder and Urai (2007), J. Structural Geology
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Cyclic Halite rheology
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Cyclic Halite rheology
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—  Sa|t hardens

Stress decrease or drying near surface
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Cyclic Halite rheology
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Internal structure
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Abb. 164. Schematisches Profilbild eines Salzstocks (nach E. SEIDL).
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Rheology of different evaporites

Mechanical layering
folding, boudinage,
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The internal structure of salt bodies is complexly folded




and boudinage
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Folding and boudinage in plasticine models

-40% strain
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Internal structure from 3D seismic
Z3 stringer folds, Groningen area

stringer

Van Gent et al, in press, available online, J StrUCtha@e_UNmﬂ%
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Z3 stringers
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Z3 stringers
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Z3 surface in Groningen area
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Z3 surface in Groningen area
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Thickened zones

Van Gent et al, in press, available online, J Structural Geology
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Top and base salt structure
a) Depth Top Z2Za Basal Anhydrite b) Depth Top Zechstein
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Large scale stringer structure is harmonic with top salt
b) Depth Top Zechstein ¢) Depth Top Stringer

Van Gent et al, in press, available online, J Structural Geology
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d) Stringer thickness

draped over Top stringer surface

¢) Depth Top Stringer

>
D
o
]
[0
O]
©
o
=]
-
[&]
>
e
P}
(7]
r)
o
£
c
o
o
Keo)
~
‘©
>
©
1}
[%2]
o
Qo
£
©
-
(0]
“—
C
[0
O]
c
©
>

-3000 m = 2000 m -1400m
KuKla, Ural et al. 2010. Salt | ectonics, Sediments and Prospectivity, | he Geological Society, {im




Thickened zones form regional Thickened zones are always in
branching networks salt withdrawal areas

Van Gent et al, in press, available online, J Structural Geology




Thickened zones are always in  Thickened zones are always
salt withdrawal areas synclines
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Summary of interpretations

b) The effect of TZ on fold shape  ¢) A constrictionally folded layer with

non-cylindrical axial planes
Based on Schmid et al. (2009)

Initial situation

After folding
Planar axial pl;aé)e':

1 - Foldlhinge
N g 4

Thickened zones are
dissolution- related
collapse structures

d) The relation between salt flow into a salt dome, and the formation of con-
striction folds and boudins.

Decrease of LSRR

diameterresults ...
in compressi .

P Flow into a
salt dome

2 - Early structures have strong effect on
internal structure and on Zechstein
topog raphy Van Gent et al, in press, available online, J Structural Geology
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Western offshore area -

-

Stringers don’t sink over geologic time

Van Gent et al, in press, available online, J Structural Geology
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W-offshore stringer structure
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Prediction of internal structure - Step 1

Kinematics of suprasalt sequence

3" phase 2" phase 1* phase
of salt movement of salt movement of salt movement
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Prediction of internal structure - Step 2

Finite element modeling driven by reconstruction of suprasalt

Li et al, accepted; Geol. Soc Special Publication on Salt
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Prediction of internal structure - Step 3

Rupture process modelled using DEM
More brittle
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Steffen Abe, unpublished work
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Compare results with observations
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