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Abstract

As technology evolves and the exploitation of unconventional resources becomes conventional practice, new applications and knowledge will
lead engineers and geologists to explore marginal hydrocarbon saturations in unique geologic horizons. One of these horizons of interest is
deep (greater than ~5000 ft.) coalbed methane (CBM).

It has been shown in numerous studies that coalbed permeability is highly sensitive to in-situ stress conditions and subsequent changes in
stress that accompany both water and gas production. However, most studies have focused on shallow CBM, and there has been little research
into coals at depth. This paper shows how simulation of CBM production is highly dependent on the assumption that pore volume
compressibility remains constant as the coal experiences changes in effective stress. While this assumption may be acceptable for modeling
shallow CBM production where stress changes are relatively small, the assumption likely does not hold true for deeper environments where
necessary changes in stress would be more significant.

When this assumption is relaxed and adjusted so that pore volume compressibility is allowed to vary with changing stress conditions, a new
vision of CMB emerges where permeability may be present and maintained during production from deeply buried coals. This conjecture
comes with a caveat: deep coals that contain water as the dominant phase in the cleat system will likely never produce commercial rates of
natural gas.

Nevertheless, the potential exists that CBM could produce at economic rates if the coal is present within a conventional trap with structural or
stratigraphic closure and a seal that has led to the development of a gas-saturated cleat system. If a coal is considered a “conventional”
reservoir where gas generation, timing, migration, and storage are optimal for creating an accumulation, economic gas production rates could
be possible.
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p = reservoir pressure, ps PB = Case #2 (Piceance Basin #1) - - m om om e e m m m m m = i 5 SPE 18253 presented at the 1988 Annual Technical Conference and
R : : — 1 i 1 -1 Exhibition, Houston, T 2-5 October.
Po = initial reservoir Pressure, ps PB2 = Case#3 (Plcegnce Basin #2) 5 / B 30 59. Busiln,I IAorl\]/IlV(I)uar?g Bue;iar?m RM.: c—)Gfal reservoir saturation: Impact of
P,, = confining (overburden) pressure, psi PGASRP = Poor gas relative permeability - - temperature and pressure,” A4PG Bull. (January 2008) 92, No. 1, 77-86.
- _ - - 60. Pashin, J.C., and Groshong Jr., RH.: -Stuctural | of coalbed
pP = POrepressure, ps PMINLOW = Well head pressure of 15 ps e i 15 i methlanneJ prod?lnctionroin OnA%a‘serlmi”H In:f:zact:‘oizzl nggrc;alo o;' Coal
P, = Langmuir pressure, psi RPGB = Poor gas relative permeability 7 e B x Geology (1998) 38, 89-113.
v p‘? = pore pressure gradi'ent, psi/ft RPWG = Enhanced water relative permeability - /
psi = pounds per square inch SD = Shi and Durucan model
Pela= aheoluite pounds per solare inch S0 = CeeeiHl (San ian Basin) Cumul ative production for Case #2 assuming variable pore volume compressibility
R,% = vitrinitereflectance USAT = Undersaturated coal _ _ _
5, 6, = effective stress, ps VAR, V = Variable pore volume compressiblity using the S& D modedl for varying wdl densi ty patterns.
ZERO, 0 = Zero water saturation in the cleat volume
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