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Abstract 
 
As technology evolves and the exploitation of unconventional resources becomes conventional practice, new applications and knowledge will 
lead engineers and geologists to explore marginal hydrocarbon saturations in unique geologic horizons. One of these horizons of interest is 
deep (greater than ~5000 ft.) coalbed methane (CBM).  
 
It has been shown in numerous studies that coalbed permeability is highly sensitive to in‐situ stress conditions and subsequent changes in 
stress that accompany both water and gas production. However, most studies have focused on shallow CBM, and there has been little research 
into coals at depth. This paper shows how simulation of CBM production is highly dependent on the assumption that pore volume 
compressibility remains constant as the coal experiences changes in effective stress. While this assumption may be acceptable for modeling 
shallow CBM production where stress changes are relatively small, the assumption likely does not hold true for deeper environments where 
necessary changes in stress would be more significant.  
 
When this assumption is relaxed and adjusted so that pore volume compressibility is allowed to vary with changing stress conditions, a new 
vision of CMB emerges where permeability may be present and maintained during production from deeply buried coals. This conjecture 
comes with a caveat: deep coals that contain water as the dominant phase in the cleat system will likely never produce commercial rates of 
natural gas.  
 
Nevertheless, the potential exists that CBM could produce at economic rates if the coal is present within a conventional trap with structural or 
stratigraphic closure and a seal that has led to the development of a gas-saturated cleat system. If a coal is considered a “conventional” 
reservoir where gas generation, timing, migration, and storage are optimal for creating an accumulation, economic gas production rates could 
be possible. 

Copyright © AAPG. Serial rights given by author.  For all other rights contact author directly.
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Deep (>5,000 ft.) Worldwide CBM Resource Estimates.  Data from Kuuskraa.6

County Basin Formation or Coal Size Estimates

United 
States Piceance Cameo 60 Tcf

San Juan Menefee coal 22-34 Tcf

Green River Fort Union, Almond 
(Meseverde)

Uinta Castlegate (Meseverde)
Western 
Washington Puget Group Coals

Canada Deep Alberta Lower Cretaceous Spirit  River 
to Nikanassin 150+ Tcf

Australia Cooper Permian Toolachee                                
and Patchawarra coal 500 Tcf; 50,000 mi.2

sub-Surat
Rieds Dome,                
Tinowon Formation,              
and Blackwater Group

Bowen Permian

Galilee Permian

China Ordos Carboniferous Taiyuan and                             
Permian Shanxi

Junggar Jurassic Badaowan,                 
Sangonghe, Xishanyo 60,000 mi.2

Tarim Carboniferous and Permian 220,000 mi.2

Kazakastan Karaganda Karagandinskaya coal 30 Tcf, 1,000 mi.2

Russia Kuznetsk Permian-Carboniferous                  
Yerunakovskaya 1200 Tcf (>4,000 ft.)

Others:  Spain, Germany, Switzerland and the United Kingdom

Permeability vs. effective stress. The ‗Equivalent Lithostatic Depth‘ (D) equals the effective
stress divided by the effective stress gradient (i.e. se = 0.572 D for lithostatic conditions).
(A) Well tests show permeability decreasing exponentially with depth. (B) Permeability
comparison assuming constant and variable pore compressibility. When the assumption of
variable pore volume compressibility is used, the permeability attains a relatively constant
value as the stress increases (adapted from McKee et al.13).

Coal rank classification. As temperature and pressure increase,
the coal rank increases resulting in higher vitrinite reflectance
values (Ro%), lower percentages of volatile matter (Vol. Mat.),
and higher heating capacities (BTU/lb.). Adapted from Stach
et al.53 found in Mukhopadhyay and Hatcher.540
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Experimental strain data vs. the volume of adsorbed
gas and pressure. (A) From Cui and Bustin.48 The
C&B model assumes a linear relationship between
volumetric strain and sorbed gas. (B) From
Harpalani and Schraufnagel36 Volumetric strain in
the coal matrix for increasing and decreasing gas
pressure for both helium and methane. One
explanation for the obvious discrepancy in (A)
between the experimental data and the linear
approximation is the difference between adsorption
or desorption strain measurements as shown in (B).

As technology evolves and the exploitation of unconventional resources becomes conventional
practice, new applications and knowledge will lead engineers and geologists to explore marginal
hydrocarbon saturations in unique geologic horizons. One of these horizons of interest is deep
(greater than ~5000 ft.) coalbed methane (CBM).

It has been shown in numerous studies that coalbed permeability is highly sensitive to in-situ
stress conditions and subsequent changes in stress that accompany both water and gas production.
However, most studies have focused on shallow CBM, and there has been little research into coals
at depth. This paper shows how simulation of CBM production is highly dependent on the
assumption that pore volume compressibility remains constant as the coal experiences changes in
effective stress. While this assumption may be acceptable for modeling shallow CBM production
where stress changes are relatively small, the assumption likely does not hold true for deeper
environments where anticipated changes in stress would be more significant.

When this assumption is relaxed and adjusted so that pore volume compressibility is allowed
to vary with changing stress conditions, a new vision of CMB emerges where permeability may be
present and maintained during production from deeply buried coals. This conjecture comes with a
caveat: deep coals that contain water as the dominant phase in the cleat system will likely never
produce commercial rates of natural gas.

Nevertheless, the potential exists that CBM could produce at economic rates if the coal is
present within a conventional trap with structural or stratigraphic closure and a seal that has led
to the development of a gas saturated cleat system. If a coal is considered a ―conventional‖
reservoir where gas generation, timing, migration, and storage are optimal for creating an
accumulation, economic gas production rates are possible.

Hypothetical production profiles for shallow (top chart) and
deep CBM well (bottom chart). The production profile for a
deep CBM well resembles a typical resource play production
profile with high initial gas rates followed by a long period of
relatively stable production. From Ayers.56

Gas Content comparison between coal and sandstone. At 4,000
psi (~9,200 ft. in a normally pressured reservoir), the gas content
of coal may contain significantly more gas than a low porosity
tight gas sandstone.

Worldwide CBM Resource Coal Cleat Geometry

Langmuir Isotherms and Production Profiles

Abstract

Permeability and Stress, Sorbed Gas and Strain

Coal Rank and Gas Generation
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Data showing coal permeability
measurements. Most coals do
not show exponentially declining
permeability as estimated by the
linearized trend.

Worldwide CBM Resource Estimates

Example Langmuir isotherm. If a coal is
unsaturated (in gas), a considerable drop in
pressure is required before production initiates.
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From Gray, 1987

Digital images of the cleat system. The
images show irregularities in the cleats that
may remain open and connected despite cleat
size reduction in higher stress environments.
From Karacan and Okandan.57

Relationships between the microporosity and
macroporosity in a coal. (A) Plan view of a coal
bed showing the relationship between face and
butt cleats along with conventions used in
classification of the cleat geometries. Also
shows the matrix where the methane is stored in
the micro-porosity of the coal. (B) Cross-
sectional view showing cleat hierarchies from
the tertiary cleats up to the primary and master
cleats. (C) Plan view combined with a cross-
sectional view showing relationships for the
larger-scale cleat system. This includes
enhanced cleat development associated with
other structural elements including channel
sandstones and fracture swarms. Modified
from Laubach et al.20 and Li et al.23
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Permeability Rebound Simulation Results Tables

Permeability Data and Compressibility Matching

Equations for Models

Simulation Model Inputs and Descriptors

pprc

prb po

k 
ko

pprc

prb po

k 
ko

prc

prb po

k 
ko

Recovery (Prc) and rebound (Prb) pressures in relation to the normalized permeability
(k/ko). As the pore pressure decreases during production, the coal permeability may
eventually reach the rebound and recovery pressures. From Shi and Durucan.39

Matrix permeability estimation using the McKee equation.
When using the assumption of exponentially declining
pore volume compressibility, as the effective stress
increases the permeability levels off to relatively constant
values at approximately 2,000 psi, or approximately 4,600
ft. Data from McKee et al.13

md k/k0 prb md k/k0 prb md prb

Case #1 0.0009 0.9% 696 0.0387 39% 870 4448% 174
Case #2 0.0029 3% 392 0.0702 70% 631 2421% 239
Case #3 0.0003 0.3% 370 0.0676 68% 674 22533% 304

md k/k0 prb md k/k0 prb md prb

Case #1 0.0070 7% 1131 0.0564 56% 1305 812% 174
Case #2 0.0206 20% 935 0.0839 84% 1153 407% 218
Case #3 0.0047 5% 935 0.0802 80% 1218 1706% 283

Constant Variable

C&B Model Minimum Permeability

S&D Model Minimum Permeability

Difference

Difference

Constant Variable

Table 5.1.  Permeability Modeling Results.

7080 = Example depth of 7,080 ft.
10000 = Example depth of 10,000 ft.
1(sp) = 1 well per 640 acres

16(sp) = 16 wells per 640 acres
32(sp) = 32 wells per 640 acres
4(sp) = 4 wells per 640 acres
8(sp) = 8 wells per 640 acres

AC = Anticline structure
ACS = Subtle anticline structure

BaseCase = Original model for PB or SJB
CB = Cui and Bustin model

COMPLOW = Lower rock compressibility
CONS, C = Constant pore volume compressiblity

GWATRP = Enhanced water relative permeability
IRR = Irriducible water saturation
LC = Lower rock compressibility

LPMIN = Well head pressure of 15 psi
P = Production graph

PB = Case #2 (Piceance Basin #1)
PB2 = Case #3 (Piceance Basin #2)

PGASRP = Poor gas relative permeability
PMINLOW = Well head pressure of 15 psi

RPGB = Poor gas relative permeability
RPWG = Enhanced water relative permeability

SD = Shi and Durucan model
SJB = Case #1 (San Juan Basin)

USAT = Undersaturated coal
VAR, V = Variable pore volume compressiblity

ZERO, 0 = Zero water saturation in the cleat volume

Table 5.2.  Abbreviations for the Simulation Runs.

MMSCF Constant Variable Difference

Case #1 11 38 345%
Case #2 25 83 332%
Case #3 18 114 633%

MMSCF Constant Variable Difference

Case #1 18 48 267%
Case #2 41 93 227%
Case #3 29 129 445%

S&D Model (25 year difference)

C&B Model (25 year difference)

Table 5.3.  Simulation Results Summary.

Reservoir characteristics after 25 years of simulated 
production

Average 
field 

pressure

Field 
gas  rate

Field 
water  
rate

Field gas  
total

Field 
water  
total

Water in 
place

Remaining 
Gas in 
place

Number 
of  wells

Input file psia mscf/day stb/day mmscf mstb mstb bcf

SJB_BaseCase.dat 3010 0 1.6 11 18 472 11.5 1
SJB_CB_CONS_7080.dat 3021 1 1.6 11 18 475 11.5 1
SJB_CB_VAR_7080.dat 2953 3 2.9 38 30 463 11.5 1
SJB_SD_CONS_7080.dat 2997 1 2.2 18 23 470 11.5 1
SJB_SD_CONS_7080_8SPOT.dat 2750 23 7.3 217 130 363 11.3 8
SJB_SD_CONS_7080_RPGB.dat 3039 0 0.6 2 8 486 11.5 1
SJB_SD_CONS_7080_RPWG.dat 2962 3 4.3 37 46 448 11.5 1
SJB_SD_VAR_7080.dat 2934 4 3.1 48 32 461 11.5 1
SJB_SD_VAR_7080_16SPOT_IRR2.dat 455 203 0 6210 0 0 5.9 16
SJB_SD_VAR_7080_8SPOT.dat 2209 79 5.0 681 127 366 10.8 8
SJB_SD_VAR_7080_8SPOT_IRR.dat 1438 115 0.4 2060 5 291 9.7 8
SJB_SD_VAR_7080_8SPOT_IRR2.dat 702 189 0 4691 0 0 7.4 8
SJB_SD_VAR_7080_AC.dat 2929 4 3.1 49 32 461 11.5 1
SJB_SD_VAR_7080_AC_16SPOT.dat 1588 152 4.2 1545 163 330 10.0 16
SJB_SD_VAR_7080_AC_16SPOT_2.dat 1583 153 4.2 1555 164 330 9.9 16
SJB_SD_VAR_7080_AC_16SPOT_2_ZERO.dat 456 203 0 6209 0 0 5.9 16
SJB_SD_VAR_7080_AC_8SPOT.dat 2215 78 5.0 674 126 367 10.8 8
SJB_SD_VAR_7080_COMPLOW.dat 2934 4 3.1 48 32 461 11.5 1
SJB_SD_VAR_7080_PMINLOW.dat 2933 4 3.1 49 33 461 11.5 1
SJB_SD_VAR_7080_RPGB.dat 3031 0 0.7 2 8 485 11.5 1
SJB_SD_VAR_7080_RPWG.dat 2820 11 7.4 114 76 417 11.4 1
SJB_SD_VAR_7080_USAT.dat 2282 3 3.1 18 48 445 11.0 1
SJB_SD_VAR_7080_ZERO.dat 1831 101 0 1498 0 0 10.6 1

Table 5.4. (cont.)

Reservoir characteristics after 25 years of simulated 
production

Average 
field 

pressure

Field 
gas  rate

Field 
water  
rate

Field gas  
total

Field 
water  
total

Water in 
place

Remaining 
Gas in 
place

Number 
of  wells

Input file psia mscf/day stb/day mmscf mstb mstb bcf

PB_BaseCase.dat 3014 2 1.5 25 16 231 11.0 1
PB_CB_CONS_7080.dat 3015 2 1.5 25 16 231 11.0 1
PB_CB_VAR_7080.dat 2931 8 2.1 83 23 224 10.9 1
PB_SD_CONS_7080.dat 2989 4 1.8 41 19 228 11.0 1
PB_SD_CONS_7080_16SPOT.dat 1984 99 3.5 1141 104 143 9.9 16
PB_SD_CONS_7080_8SPOT.dat 2470 54 3.3 535 76 171 10.5 8
PB_SD_CONS_7080_AC_16SPOT.dat 2984 4 1.8 42 19 228 11.0 1
PB_SD_CONS_7080_AC_8SPOT.dat 2475 54 3.3 529 76 171 10.5 8
PB_SD_CONS_7080_ZERO.dat 2162 70 0 1041 0 0 10.3 1
PB_SD_VAR_7080.dat 2917 9 2.1 93 23 223 10.9 1
PB_SD_VAR_7080_16SPOT.dat 1166 209 1.4 2770 78 168 8.2 16
PB_SD_VAR_7080_32SPOT.dat 893 225 1.2 3704 83 163 7.3 25
PB_SD_VAR_7080_4SPOT.dat 2382 79 2.0 597 53 193 10.4 4
PB_SD_VAR_7080_8SPOT.dat 1797 146 1.8 1392 66 181 9.6 8
PB_SD_VAR_7080_AC_16SPOT.dat 1174 208 1.4 2747 78 169 8.3 16
PB_SD_VAR_7080_AC_8SPOT.dat 1805 145 1.8 1379 66 181 9.6 8
PB_SD_VAR_7080_ZERO.dat 1675 117 0 1777 0 0 9.5 1
PB_SD_VAR_7080_ZERO_16SPOT.dat 420 181 0 6509 0 0 4.8 16
PB_SD_VAR_7080_ZERO_32SPOT.dat 330 171 0 7251 0 0 4.1 25
PB_SD_VAR_7080_ZERO_4SPOT.dat 908 170 0 3867 0 0 7.4 4
PB_SD_VAR_7080_ZERO_8SPOT.dat 639 182 0 5111 0 0 6.2 8
PB_CB_CONS_10000.dat 4268 1 1.8 18 20 228 11.7 1
PB_CB_VAR_10000.dat 4020 14 2.3 114 32 215 11.6 1
PB2_SD_CONS_10000.dat 4234 3 2.1 29 24 224 11.7 1
PB2_SD_VAR_10000.dat 3987 16 2.2 129 33 215 11.6 1

Table 5.4.  Summary of Snapshots for Simulation Runs.  Snapshots may be found in Appendix A.
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    Case #1 Case #2 Case #3   

  Variable SJB Value Piceance 1 Piceance 2 Units 

Stress Model  0.39 0.31 0.31   
  E 4.45E+05 3.50E+05 3.50E+05 psi 

  1/PL,b, 0.0016 0.00125 0.00125 psi-1 
  l SVL 0.0128 0.01 0.01   
  P0 3080 3080 4350 psi 
   0.01064 0.00794 0.00845   
  f 0.5 0.5 0.5   
   1.30E-06 1.30E-06 1.30E-06 psi-1 
  0 0.001 0.005 0.005   
  K/M 0.76 0.633 0.633   
  M/E 1.995 1.386 1.386   

  cm 7.89E-07 1.89E-06 1.89E-06 psi-1 
  ? Pp = 0.435 0.435 0.435 psi/ft 
  ? sov= 1 1 1 psi/ft 

  k0  0.1 0.1 0.1 md 

Compressibilty k0eff =  0.14 40 40 md 
Model s0 =  0 500 500 psi 

  c0 =  2.20E-03 1.80E-03 1.80E-03 psi-1 

   =  1.30E-03 2.95E-03 2.95E-03 psi-1 
Constant          

Compressibilty cp =  1.34E-03 1.00E-03 1.00E-03 psi-1 
 
GREEN = from Palmer and Mansoori,49 RED = from Jeu et al.,58 BLUE = fit for McKee et al.13

data, BROWN = from McKee et al.,13 PURPLE = assumed values, BLACK = calculated values.
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Model Observations

• 1st term is always smaller for S&D Model
– Lower effective stress related to pressure

• 2nd term is 50% greater for S&D model
– Greater shrinkage due to desorption
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Gas Gravity 0.55
Temperature 120oF
PL* 625 psi
VL* 550 scf
Grid Setup 41 x 41 x 1
Grid Size 5280 ft.2

Thickness 20 ft.
Ash Content 0%
Skin Factor -4
Wellhead Pressure 50 psi 
# of Wells 1
Water Saturation 100%
Density* 1975 tons/acre-ft.
Wellbore Radius 0.2 ft.

Table 4.2.  Base Values used for 
the Simulations.

*Based on (16).

Base Values Used for Simulation

Abbreviations for the Simulations

Change in effective stress compared to changes in combined effective stress. The orange line shows
how the effective stress changes with decreasing pore pressure. The red and blue lines show the changes
in combined effective stress calculated from the C&B and S&D models.

Case #1; San Juan Coals; Depth – 7,080 ft. With the assumption of variable compressibility,
permeability does not decrease as much. As the stress increases, the compressibility decreases
essentially making it harder and harder to close the coalbed‘s cleat volume system.

Case #2; Piceance Coal; Depth – 7,080 ft. The constant compressibility cases show more sensitivity to
changes in stress during simulated production.

Case #3; Piceance Coal; Depth – 10,000 ft. When assuming an exponentially declining pore volume
compressibility, permeability changes are minor. In comparison, when using a constant value, the
modeled perm decreases to almost zero in the C&B and P&M models.

Variable pore volume compressibility constants derived from best-fit of permeability data for Case #1.
The solution determined from the data is non-unique. Data from McKee et al.13
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Example displaying the difference between permeability estimation
assuming variable or constant pore volume compressibility. When
variable compressibility is assumed, the permeability levels off to
approximately 0.03 md beyond an effective stress of 3,000 psi, or
beyond approximately 6,900 ft. Data from Rose and Fob.11

Permeability sensitivity of the P&M model to initial porosity
estimation. The permeability ratio most similar to the S&D model
results requires a porosity estimation of ~5%.

• Most commonly used model
• Applies to static (constant pressure) case
• Highly sensitive to initial porosity estimation

– Only handles small changes in porosity
– Can become negative
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Cui & Bustin (C&B)

• Shown to be equivalent to P&M model
• Volumetric strain directly related to sorbed gas content

• Matrix shrinkage proportional to volume of desorbed gas
• Changes in permeability are related to the effective horizontal

stress
• May only apply to horizontal coalbeds

Compressibility Equation

The impact of the pore volume compressibility assumption 
on simulated 25-year cumulative production.

The impact of the pore volume compressibility assumption on minimum permeability predictions and the 
simulated rebound pressure where lower pressures lead to increases in permeability within the reservoir.

Summary table of the simulations used for this study.

Simulation Inputs for All Cases
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 = rate of decline of pore volume compressibility, psi-1
s = matrix shrinkage/swelling coefficient, ft3/scf

b, , 1/PL = Langmuir pressure constant, psi-1

bcf = billion cubic feet
cm = centimeter
cm = matrix compressibility, psi-1
cp = pore volume compressibility, psi-1
c0 = initial pore volume compressibility, psi-1
D = equivalent lithostatic depth
E = Young's Modulus, psi

g = 
coefficient of sorption-induced volumetric strain, 
ton/scf

l = maximum shrinkage strain at V = VL
V = sorption-induced volumetric strain

V0 = initial sorption-induced volumetric strain
ft. = feet
g = grams
 = porosity

0 = initial porosity
 = grain compressiblity, psi-1

K = bulk modulus, psi
k = permeability, md, md, nd

k0 = initial permeability,md, md, nd
M = constrained axial modulus

mi. = miles
mmscf = million cubic feet

mscf = thousand cubic feet
mstb = thousand standard barrels

p = reservoir pressure, psi
p0 = initial reservoir pressure, psi

pov = confining (overburden) pressure, psi
pp = pore pressure, psi
PL = Langmuir pressure, psi

▼pp = pore pressure gradient, psi/ft
psi = pounds per square inch

psia = absolute pounds per square inch
Ro% = vitrinite reflectance
s se = effective stress, psi
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Relative permeability in coal. Deeper coals may contain relative
permeability that causes a ―permeability block‖ to occur where neither
phase is mobile. In this example, this would occur with
approximately 70% water saturation for the high stress curves. Data
from (16).
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Daily production for Case #2 using different well density 
patterns and 0% water saturation (S&D Model).
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Cumulative production for Case #2 using different well 
density patterns and 0% water saturation (S&D Model).

s0 = initial effective stress, psi
s s  s0) = change in effective stress, psi

▼sov= overburden stress gradient, psi/ft
stb = standard barrels
Tcf = trillion cubic feet

 = Poison's Ratio
V = volume

V = change in volume
VL = Langmuir volume, scf/ton or scf/ft3

Vp = pore volume
7080 = Example depth of 7,080 ft.

10000 = Example depth of 10,000 ft.
1(sp) = 1 well per 640 acres

16(sp) = 16 wells per 640 acres
32(sp) = 32 wells per 640 acres

4(sp) = 4 wells per 640 acres
8(sp) = 8 wells per 640 acres

AC = Anticline structure
ACS = Subtle anticline structure

BaseCase = Original model for PB or SJB
CB = Cui and Bustin model

COMPLOW = Lower rock compressibility
CONS, C = Constant pore volume compressiblity

GWATRP = Enhanced water relative permeability
IRR = Irriducible water saturation
LC = Lower rock compressibility

LPMIN = Well head pressure of 15 psi
P = Production graph

PB = Case #2 (Piceance Basin #1)
PB2 = Case #3 (Piceance Basin #2)

PGASRP = Poor gas relative permeability
PMINLOW = Well head pressure of 15 psi

RPGB = Poor gas relative permeability
RPWG = Enhanced water relative permeability

SD = Shi and Durucan model
SJB = Case #1 (San Juan Basin)

USAT = Undersaturated coal
VAR, V = Variable pore volume compressiblity

ZERO, 0 = Zero water saturation in the cleat volume

―Coal is a soft rock with a 
low elasticity Modulus. 

This property facilitates the 
creation of relatively wide 
hydraulic fractures and the 
containment of fractures in 
the coal interval when the 
interfacial shear strength 
across the coal/bounding-

rock interface is low.‖
- Dave Cramer

Conclusions

• Ideal reservoir characteristics for 
deep CBM exploration

– Structural or stratigraphic closure
– Bounded by shales

• Fracture height containment, hydrocarbon 
seals

– Rank of high-volatile A or higher 
(>Rm 0.8%)

• Generation of hydrocarbons could drive 
water to irreducible levels and create 
overpressure

• Maximum cleat frequency at ~1.35% 
vitrinite reflectance

– Bright, Vitrinite-rich coals
• Greater surface area in smaller pore system
• Better development of fracture system

– High Young‘s Modulus and 
Poison‘s ratio

• Lower elasticity, more brittle

– Moderate to Low stress conditions
– Large Langmuir Pressure

• Higher gas content

– High in-situ porosity/permeability
– Low ash content

Typical burial history for 
Rocky Mountain basins 

with recent uplift.
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In situ stress profile in San Juan 
Basin (after Palmer et al., 1989)
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Structural control on Alabama 
CBM production.60

The change in sorption capacity of coals as they are uplifted from initial burial depths assuming 
geothermal gradients of 1.0, 1.6, and 2.2 oF/100 ft. (black, gray, and white dots, respectively).

Relationship of Coal Permeability vs. Depth, Bowen Basin.6

Relationship between Langmuir volume
and rank for Bowen basin coals showing
that vitrinite-rich bright coals have greater
capacities to adsorb methane.

• Summary
– Permeability may exist at depth in 

coalbed reservoirs
– Evidence supports using a declining 

pore volume compressibility for coals
– Simulated permeability rebound and 

production are significantly affected by 
the PV compressibility assumption

– A deep, unsaturated coal will not likely 
produce at economic rates

– The S&D model is the most optimistic

• Future Work
– Exploration into how dry coals could 

be created and where they may exist
– Field testing of coal permeability in 

high stress environments
• High-stress laboratory testing could provide 

insight into compressibility and permeability 
evolution, but it would not represent the in-situ 
fracture and cleat system

– Due to its impact on production, insight 
into relative permeability and how it 
could change with production is needed
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