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Abstract

Injection of carbon dioxide (CO-) for the purpose of enhanced oil recovery (EOR) is widely regarded as one of the key commercial
applications of geological storage that will provide valuable insight into large-scale projects aimed at reducing CO, emissions to the
atmosphere. The Plains CO, Reduction Partnership, one of the seven U.S. Department of Energy National Energy Technology
Laboratory Regional Partnerships, is conducting a project in the Northwest McGregor oil field in North Dakota to determine the effects
CO; will have on the productivity of the reservoir, wellbore integrity, and the carbonate formation into which CO, was injected. The
method used in this project is “huff 'n’ puff” whereby 400 tons of supercritical CO, was injected into a well over a 2-day period and
allowed to “soak” for a 2-week period. Then the well was subsequently put back into production to recover incremental oil.

The purpose of this paper is to outline the approach and current observations for the numerical modeling of potential geochemical
reactions in order to evaluate the short-term risks for operations (e.g., porosity and permeability decrease) and long-term implications
for CO, storage via mineralization. Mineralogy of the reservoir was determined using well logs, traditional core sample analysis, x-ray
diffraction, and QEMSCAN techniques. Using the results of these analyses, the mineral phases selected for model inputs were
anhydrite, calcite, dolomite, illite, K-feldspar, and traces of pyrite. A pressurized bottom-hole fluid sample was also collected, and its
composition was determined. The results of this fluid sample were also used as input parameters for the model.

Modeling was performed using PHREEQC and Geochemist Workbench software in order to determine the most favorable
geochemical interactions, evaluate in situ fluid properties, etc. The Computer Modeling Group Ltd. GEM simulator was utilized for
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the creation of a 2-D cross-section model for reactive transport evaluation. It was determined that the already reducing environment
of the Northwest McGregor oil field should not experience any significant changes in mineralogy, especially in the near term.
However, the possibility of minor reprecipitation of pyrite and precipitation of siderite exists. Also, the long-term (over 10,000
years) dissolution of calcite with a following precipitation of gypsum and dolomite may occur.
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