Characterization and Modeling of a CO₂ Huff ‘n’ Puff to Predict and Verify EOR Production and CO₂ Storage*

Damion J. Knudsen¹, Charles D. Gorecki², Jordan M. Bremer², Yevhen I. Holubnyak², Blaise A. Mibeck², Darren D. Schmidt², Steven A. Smith², James A. Sorensen², Edward N. Steadman² and John A. Harju²

Search and Discovery Article #80097 (2010)
Posted August 31, 2010

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, New Orleans, Louisiana, April 11-14, 2010

¹Energy and Environmental Research Center, Grand Forks, ND (dknudsen@undeerc.org)
²Energy and Environmental Research Center, Grand Forks, ND

Abstract

A CO₂ Enhanced Oil Recovery (EOR) Huff ‘n’ Puff project was commenced in the E. Goetz 1. well in the Northwest McGregor Field of Williams County, North Dakota. The Northwest McGregor huff ‘n’ puff is a Plains CO₂ Reduction Partnership (PCOR) Phase II project in which CO₂ was injected into a fractured carbonate reservoir for the dual purpose of EOR and associated storage. The perforated interval and injection target is the fractured upper Mission Canyon Formation. Oil produced from this zone is generally trapped in small lenses of partially dolomitized grainstones and packstones interbedded in lime mudstones. Northwest McGregor shows are generally found in peloidal, ooidal, and pisolitic grainstones and packstones bearing skeletal remains of calcareous algae, coral, or crinoid fragments. Above the Mission Canyon are typical sub- to supratidal mixed-layer carbonate anhydrite sequences capped by a thick salt zone.

In order to understand short- and long-range temporal dynamics of the CO₂ injection, a static geologic model was produced. Characterization and modeling in support of dynamic simulations included normalizing all logs and performing an error-minimizing stochastic multiminerall petrophysical and fluid analysis. Neural networks were used to produce matrix permeability, fracture density, and missing zones or logs in the study area. Petrophysical results were verified with Qemscan, x-ray diffraction, petrographic analysis, and cutting and core descriptions. This produced the main components for a macro/micro-facies and fluid model, with the major lithofacies being limestones, dolomites, and anhydrites. Within the dolomites and limestones, the diagenetic depo-facies consisted of grainstones, packstones, and mudstones. Large-scale trend modeling used traditional sequential indicator and Gaussian simulations, while small downscaled injection models used discrete and continuous multiple point statistics to model the gradational
mudstone to grainstone sequence common with platform carbonates. Vertical seismic profiles (VSP), temporally resolute reservoir saturation tool (RST) logs, and produced fluid analysis were used to history-match fluid and gas saturations as well as rock matrix mineralogy, produced water, and petroleum compositions. The short-term outcome of the CO₂ huff ‘n’ puff was a definite increase in produced oil and a decline of produced water in comparison to historic data.

References

American Association of Petroleum Geologists
2010 Annual Convention
New Orleans, Louisiana, April 11–14, 2010

Characterization and Modeling of a CO₂ Huff ‘n’ Puff to
Predict and Verify EOR Production and CO₂ Storage

Damion J. Knudsen*, Charles D. Gorecki, Jordan M. Bremer, Yevhen I. Holubnyak,
Blaise A. Mibeck, Darren D. Schmidt, Steven A. Smith, James A. Sorensen,
Edward N. Steadman, and John A. Harju
The Plains CO₂ Reduction (PCOR) Partnership is a collaborative program assessing regional CO₂ storage opportunities. Its primary sponsor is the U.S. Department of Energy National Energy Technology Laboratory, with additional support from its more than 80 partners.
- Fractured carbonate huff ‘n’ puff (HNP) in E. Goetz 1 of the NW McGregor oil field located in the Mission Canyon Formation.
- Fractured carbonates present many challenges.
- Challenges met using state-of-the-art modeling methods.
Major goals of this PCOR Partnership pilot project are aimed at determining:

1. Fate of injected CO_2.
2. Effectiveness of HNP.
3. Methods scaling to larger injections.
4. Monitoring, verification, and accounting (MVA) techniques.
Initial petrophysical analysis methods

1. Vintage wireline log normalization.

2. Neural network synthetic log production

3. Multimineral petrophysical analysis (MMPA).

Why do a MMPA? Is this really important?

1. Vintage logs indicated no anhydrite although cuttings suggested otherwise.

2. Gives a better basis for determining formation wettability.

3. Lithology in combination with tectonics control fracture propagation.
Matrix Modeling Workflow

Effective Porosity vs. K_{Brine} vs. Micro-Facies
For Well E. Goetz 1 (NDIC #3391)

- This graph helps illustrate and verify the relationship between microfacies, effective porosity, and permeability to water.
- Microporosity is defined as pores less than 0.5 µm in diameter.
- S_{wi} cutoffs were used to form the different microfacies.

QEMSCAN analysis @ 8076’ md
Matrix Modeling Workflow

- VSP inversions to effective porosity and absolute acoustic impedance (AAI).

- Horizontal semivariogram

Exponential Semivariogram

Range 1100 ft
• Matrix modeling used sequential gaussian and indicator cosimulation.

• Upscaled simulation flow grid shown with lowered resolutions.
Dual Porosity and Permeability Workflow

Fracture Workflow
Fracture Modeling Workflow

\[k_f = \frac{k_d^2}{k_m} \quad (1) \]

- \(k_f \) = fracture permeability (md)
- \(k_d \) = Permeability from DST (md)
- \(k_m \) = Core permeability (md)

\[k_e = k_m + \Phi_f k_f \]

- \(k_e \) = effective/DST permeability (md)
- \(\Phi_f \) = fracture porosity = \(\frac{W}{Z} \times 100 \)

\[k_f = 84.4 \times 10^5 \times \frac{W^3}{Z} \quad (2) \]

- \(Z \) = fracture spacing (cm)
- \(W \) = fracture width (cm)

\(Z \) is measured by documenting fractures in core

- Fractures propagate differently according to lithology.
- This concept was used to model fractures.
Fracture Modeling Workflow

Fracture Intensity Grid

Synthetic Fracture Intensity Log

Fracture Intensity Grid
Fracture Modeling Workflow

Discrete Fracture Network
Fracture Modeling Workflow

Fracture Porosity
Dual Porosity and Permeability Workflow

Dynamic Simulation

[Images and diagrams related to dual porosity and permeability workflow]
Sensitivity Analysis

Why do a sensitivity analysis?

- To limit variable petrophysical properties that most affect injection and production.
- Without this, many unnecessary simulation runs may be required to form a history match.
Dynamic Simulation History Matching

Time-Lapse RST Log

Time-Lapse Simulation Cross Sections of Total Oil and CO₂ Volumes

History Match Graphs
Matrix vs. Fracture CO$_2$ Saturations

- CO$_2$ volumes are apparent in both matrix and fracture pore space.
- Most of the CO$_2$ is left in the fractures and does not permeate the matrix blocks.
Results, Conclusions, Lessons Learned

- Over 6 months, recovery doubled.

- Injectivity was proven at 440 tons in 1.27 days, increasing qualifications for this type of formation in large-scale CO$_2$ injection projects.

- VSP and RST were determined to be vital and excellent tools for near-wellbore modeling.

- Modeling and history-matching activities gave good support for the overall CO$_2$ plume extent.

- Not accounting for fractures can lead to erroneous history matches.
Acknowledgments

The authors would like to thank:

Eagle Operating
Computer Modeling Group
Schlumberger
North Dakota Geological Survey
All PCOR Partnership partners
for their support.
Thank You!

Contact Information
Energy & Environmental Research Center
University of North Dakota
15 North 23rd Street, Stop 9018
Grand Forks, ND 58202-9018
Phone: (701) 777-5000
Fax: (701) 777-5181
Web site: www.undeerc.org

Damion Knudsen, dknudsen@undeerc.org, (701) 777-5397
Charles Gorecki, c gorecki@undeerc.org, (701) 777-5355
James Sorensen, jsorensen@undeerc.org, (701) 777-5287
Jordan Bremer, j bremer@undeerc.org, (701) 777-0877
Steve Smith, ssmith@undeerc.org, (701) 777-5108
Edward Steadman, esteadman@undeerc.org, (701) 777-5279
John Harju, jharju@undeerc.org, (701) 777-5157
References
