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Abstract

Predicting spatial change in the thickness and grain size of turbidites away from points of well or outcrop control is a primary component of
any quantitative model for deep-water stratigraphy. These predictions are often made using a numerical model that couples sediment
transport and deposition to the flow field of a representative turbidity current. We present a methodology that can be used to evaluate how
precisely this flow field must be described in order to accurately reconstruct thickness and grain size trends and apply the methodology to
the modeling of turbidites filling sinuous submarine channels and constructing levees of submarine channels. To evaluate the control that
local flow dynamics and channel topography have on depositional patterns, we calculate a characteristic advection length for every particle
size of interest within a transporting turbidity current. This advection length is the horizontal length scale over which a representative
particle is transported within the current between contacts with the bed. Its magnitude is the product of a characteristic travel time and a
characteristic advection velocity. We estimate the advection time as a characteristic height above the bed associated with the suspended
particles, divided by their representative settling velocity. The advection velocity is the average current velocity associated with the portion
of the flow through which the grains are settling. We present laboratory and seismic data to demonstrate that deposit geometries are
relatively insensitive to local channel topography and local flow dynamics for that part of the sediment load where the advection length
scale is large relative to the imposed spatial changes. We then present a set of calculations defining the range of flows and particle sizes
where depositional models for sinuous submarine channels and levees must include a description for deposition rate that is governed by
gradients in local sediment transport capacity, versus flows and particle sizes where deposition rate can be prescribed to non-local sediment
advection from upslope. Preliminary investigation indicates that gross depositional trends for turbidites composed of very fine and fine sand
can almost always be modeled using a simple advection-settling model, while coarse sand typically requires inclusion of local dynamics;
medium-sand turbidites are case specific.

Copyright © AAPG. Serial rights given by author. For all other rights contact author directly.
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(1/2) Goals

m Simplification of models
m Applied to depositional turbidity currents
m Based on concept of particle advection length

m Allows one to model deposition very easily.
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(2/2) Modeling

m Current modeling tools model the whole flow field

m Complex codes

m Complicated flow field means computationally intensive
programs, but

m A complicated flow field does not always transcribe to a very
complicated deposition pattern

m What if, for certain cases, we could avoid computing the
whole flow field?
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Why?

(1/2) Garcia's experiments
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(2/2) Lamb's experiments

Plunge point

Depth-limited plume

‘—“_h____*
01m Turbidity current
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Why? on Examples

(2/2) Lamb's experiments
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Why?

(2/2) Lamb's experiments

Plunge point

Depth-limited plume

‘—“_h____*
01m Turbidity current

Velocity (mm/s)

From Lamb et al., 2010 [3]
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Physical model Computational transcription

(1/3) Physical description
Let's start with:

A, : bed porosity

dn dg »
(1 - /lp) . d_ = —55 with n : bed elevation ;
! q;, : volumetric sediment flux per unit width
dg e : dimensionless entrainment parameter
ES =e-w, — - w, With ¢, : near-bed sediment concentration
w, @ particle settling velocity
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Physical model Computational transcription

(1/3) Physical description

Let's start with:

A

dp  dg, ?
(1=4) g, =—3 with ¢ 7
qs

9, _ ith )
a—e ‘ws Cb ‘ws Wi {;b

and add two other equations

c
% = o1 },with Cc
e = 9 q

qSC

bed porosity
bed elevation R
volumetric sediment flux per unit width

dimensionless entrainment parameter
near-bed sediment concentration
particle settling velocity

depth-averaged sediment concentration
depth-averaged sediment concentration at capacity
flow discharge per unit width

sediment transport capacity per unit width
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Physical model Computational transcription

(2/3) Physical description

At capacity:
%:fw-(e—c):O:>e:c ¢ ¢ €
dx s b b l—=c=—c=e — =qc.=q—
C:CC Cb Cb ~— 70
~— 9sc
1
w0

Combine all these equations:

qu _ _ <7O'qsc % Cq> _ <70'qsc 70'q3>
__ws'(e_cb)_ws' - T | =W -
dx g ¢ q q q

d d
< 1 >&:q§c—qS:>Deﬁnei lﬂ:< 1 >:>la£:qsc_q5

7o w, ) dx Ty W,

A.-P. Peyret, D. Mohrig, M. Lamb, B. McElroy Determining How Much Topographic Complexity. . .



Physical model Computational transcription

(2/3) Physical description

At capacity:
%:fw-(e—c):O:>e:c ¢ ¢ €
dx s b b l—=c=—c=e — =qc.=q—
c=c, (oA (A ~— L)
~— 9sc

Combine all these equations:

qu _ _ <7O'qsc % Cq> _ <70'qsc 70'q3>
__ws'(e_cb)_ws' - T | =W -
dx q ¢ q

d d
< 1 >&:q§c—qS:>Deﬁnei lﬂ:< 1 >:>la£:qsc_q5

7o w, ) dx Ty W,
: = _1). 9 dg,c
=0 qsg;) ) _, (1-%) 7
lfmdo0 = 3 =0 4:(x) = g
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Physical model Computational transcription

(3/3) Consequences

m [, — 0: Deposition follows local transport capacity gradient,

i.e. local flow dynamics and topography —> requires more
complete description of flow field;

m [, — 4o0: Deposition follows inlet sediment flux.

Flow velocity (~q)
Av]rage Settling velocity (~»wy) >~ - Sediment inertia
settling S
height N . q
(~7p) . ld —
\ VO “w s

|<—Advection length

From Lamb et al., 2010
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How? Physical model Computational transcription

Outline

How?

m Computational transcription
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(1/4) Assumptions
m Fully depositional flow => Primary reservoir objectives
m Simple advection length /, computed for a single grain
m Concentration profile follows a Rouse profile at any time
m Height of bedload layer Z, ~10- D,
m Given center of mass of sediments (computed using Z,, but with

the Rouse number p for a single grain size)
m Exponential decrease of concentration with distance

m Spherical grains, settling velocity from Dietrich, 1982 [4]
= Assumed value of drag coefficient Cp =4 x 1073

m Fluid viscosities and densities either assumed or computed from
temperature data
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How? Physical model Computational transcription

(2/4) Program “flowchart”

w, = f(Dy,) (Stokes, Dietrich)

Z,=1 7. -1=p (%)

0-D;,

H he[1;10]-H

A.-P. Peyret, D. Mohrig, M. Lamb, B. McElroy Determining How Much Topographic Complexity.



(3/4) “Composite advection length”

When a distribution of grain sizes is involved, we assume:

m Constant flow velocity

m For one grain, same initial height Z; independent of
distribution:

m Use advection length as settling velocity estimate, i.e.

m Between deposition of grains z—1 and ¢, grain 7 settles at
Z,(n)-U,
2.

Lid,)

L

velocity V;(n) = =+==°

Lo L

S WOREWE)
L=,
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How? Physical model Computational transcription

(4/4) “Composite Advection Length”

The “"Composite Advection Length” may be computed using recursive formulae

(d,>dy>...>d,):

=1
Li(d
Lﬁdﬁ = 1450 (@) [ ] Va2

Or, using a “ghost” grain size d;, of infinite mass:
L, (do) = 0

n—1 N— .
L) = L*<dn_1>+Ln<dn>[1— b5 %} V>0

With:
m L, (d;): Composite advection length for grain d;
®m L;(d;): Simple advection length for grain d; between deposition of grain d;_,
and deposition of grain d]
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Results Scales Influence of initial G.S.D. Literature comparison

Outline

Results
m Advection length scales
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Results Scales Influence of initial G.S.D. Literature compari
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Results Scales Influence of initial G.S.D. Literature compari

(2/2) Comparison with length scales of topographic
elements

|| Location | Topographic | size | Reference ||
element
Monterey Channel Length 300 + km
Width (min) 0.4km
Monterey Channel Depth (min) 32m Clark and Pickering, 1996b [5]
Monterey Channel Width (max) 2.8km
Monterey Channel Depth (max) 884m
Cascadia Channel Length 2000+ km
Cascadia Channel Width (max) 5.6km Clark and Pickering, 1996b [5]
Cascadia Channel Depth (max) 285m
T Width 600m . .
Mississippi Levees Depth 10m Clark and Pickering, 1996a [6]
Width 10 < 30 < 40km
NAMOC Channel-levee Depth 100 < 200 < 300km Skene et al., 2002 [7]
Lourertian system Width 16 <20 < 24km " -
Depth 300 < 400 < 600m
[ Wavelength [ 2<49<1lkm .
|| Amazon | Channel [ Radius of curvature | 0<1.05<3.5km | Pirmez and Imran, 2003 [8]

Table: Scales of some natural topographic elements
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Results Scales Influence of initial G.S.D. Literature comparison

Outline

Results

m Influence of initial grain size distribution
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Results Scales Influence of initial G.S.D. Literature compari

(1/3) Grain size distributions used to compute composite

advartinn lanathe
CDFs for all distributions
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Results

Scales Influence of initial G.S.D. Literature compari

(1/3) Grain size distributions used to compute composite

advartinn lanathe
CDFs for all distributions

Fraction finer
o

°

©

/ Shape
[

1000
Gain Size (um

. Peyret, D. Mohrig, M. Lamb, B. McElroy

1500 2000

18 distributions.
S:

3% linear (uniform)
3x normal
3x lognormal

3x “Lognormal-
opposite”

3x Gamma (small
coefficient)

3x Gamma (large
coefficient)

1 Ranges:

6 x [1;100] um
6 x [20;2000] um
6  [1;2000] um
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Results Scales Influence of initial G.S.D. Literature compari
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Results Scales Influence of initial G.S.D. Literature comparison

(2/?\ Collanse of emall orain sizes on similar nower-laws
Extreme advection lengths for all distributions
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Results Scales Influence of initial G.S.D. Literature comparison
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Results Scales Influence of initial G.S.D. Literature comparison
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Results Scales Influence of initial G.S.D. Literature comparison

(3/3) Remarks

m For grain sizes smaller than 200um, the initial grain size distri-
bution bears little influence on a grain's advection length (Fac-
tor 2 is maximum).

m Mathematical viewpoint: System with stochastic input but de-
terministic process; “The smaller the grain size, the lesser the
importance of the initial distribution of grain sizes.”
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Results Scales Influence of initial G.S.D. Literature comparison
Outline

Results

m Computed lengths vs. literature
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Results Scales Influence of initial G.S.D. Literature comparison

Garcia's 1994 experiments: Grain size distribution match
From Garcia, 1994 [2]
100

Distribution fit

T T 1
—CDF for distribution fit
90+ = 0.9l Garcia experimental point:
80+ T 0.8
704 |
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5 60 / i 20
c n
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B 404 - b
9]
X EOA
304 / 1 f
20- / -
0.2
104 / i
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o ,
0 .
! 10 100 10° 10" 10°
) Sediment size (um)
Sediment size (microns)
FIG. 3. Typical Size Distribution of Sedi Used in Experi
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Results

Scales Influence of initial G.S.D. Literature comparison

Garcia's 1994 experiments: Grain size deposit match?

From Garcia, 1994 [2]
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Results Scales Influence of initial G.S.D. Literature comparison

Garcia's 1994 experiments: Grain size deposit match?

Grain size vs. advection length

From Garcia, 1994 [2] 120 ' ' T —carci

Garcia Mix 2
Garcia Mix 3
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Results Scales Influence of initial G.S.D. Literature compari

Garcia's 1994 experiments: Grain size deposit match?

From Garcia, 1994 [2]
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Results

Scales Influence of initial G.S.D. Literature comparison

Garcia's 1994 experiments: Grain size deposit match?

From Garcia, 1994 [2]
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Conclusions

Conclusions

m Advection-settling model simplifies modeling of turbidity
current deposits

m Complicated flow (with hydraulic jump, complex velocity
profile) can create simple deposition profiles
m Advection-settling already used to model levee growth by

Straub and Mohrig, 2008 [9]
m Model is accurate for small grain sizes

m Comparison of advection length(s) and local scale(s) of
topography indicates the need (or not) for more detailed

modeling
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Rouse profile: Presentation

Downward motion of sediment counteracted by upward eddy diffusion:

K(2) & (1-c)
—=—w c-(1—c

S dZ S S S

Separating variables and integrating between Z, and Z gives:

s dz ¢ z
- "7 [‘“<1—CS>LZ‘P'D‘“Z”i

W2 o2 < z >-P
1- Cs (Z) 1- Cs (Zu) Zﬂ

with
mK=axu-7 mp= a_ff%*: Rouse number,
m x~0.407: Von Karman's constant,  m ¢(Z): Average volume concentration in the
By, = ‘/Ffﬁ shear velocity, flow at height Z,
m #: depth-averaged velocity, m p < 0.8: Suspended load,
[ Cf: Drag coefficient m Larger p: More and more bedload.
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Rouse profile: Center of mass of suspended sediment

If ¢, < 1, then = ~1 and in the lower flow, ¢,(Z) ~¢,(Z,)- <%>F.

Consequently,

b
(2)-Z dZ g :
, 2T L G-, L
femaz 77 (%) -%
Za
Therefore:

m if p — 400, then Zm:Zd;

NI

mif p—0, then Z, =
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Rouse profile: Characteristic distance above bed at which
sediment diffuses in the flow

Using the approximation ¢, (Z) ~c,(Z,)- <%>P in the lower flow,

o et (-

Hence the height assouated with the average suspended sediment
concentration:

_ = Z Zﬂ P _ CS (Zﬂ) Zﬂ p Zd
c=e=er(z) =15 [(3) 3]
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Rouse profile: Equation used by Rouse

The equation:

7\ P
—(2) 1-¢(2,) <7>
)=

does not show that ¢,(h) =0. This equation may be replaced by the

one given by Rouse:

h—2 Z \1"
CS(Z):CS(Za)'[< 7 ><b—Z>]
W|thp—

to compute the advection length of sediments being transported
over levees in decelerating, depositional currents.
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Garcia input data

Run UO /90 CO Rio T;nlet Y}IWne Run time
(em-s") [ (em) | (1) | (1) | (C) | (C) | (min)
MIX1 13.3 3 364|010 | 17.0 | 16.5 45
MIX2 13.3 3 7.28 | 0.20 | 4.0 15.0 43
MIX3 13.3 3 728 1020 | 7.5 7.5 34
MIX4 11.0 3 642 |1 026 | 6.5 7.0 20
MIX5 11.0 3 7.28 1 0.29 | 6.0 7.0 30
MIX6 11.0 3 1090 | 0.44 | 4.5 5.0 30
DEPO1 13.3 3 364|010 | 6.0 7.0 40
DEPO2 14.3 3 21.80 | 0.52 | 6.8 7.5 24
DEPO3 14.3 3 10,90 | 0.26 | 6.0 6.0 24

Table: Input data for Garcia's experiments ([2]).

A.-P. Peyret, D. Mohrig, M. Lamb, B. McElroy Determining How Much Topographic Complexity. . .



Appendix Profile Data Plots Definitions

Outline

HE Appendix

m Plots

A.-P. Peyret, D. Mohrig, M. Lamb, B. McElroy g How Much Topographic Complexit:



Appendix Profile Data Plots Definitions

Garcia's 1994 experiments: Further simplifications?

In these experiments, the grain sizes were small
(S 100um): L;(d;)~L,(d,).

1

Difference between composite advection length and simple advection length vs. grain size

~

&£-0.05} 1

0

s

2 -o0.1} 1

c

[

-

c —-0.15F E

2

5

<1>.> -0.2f E

2

£ -0.25F —Garcia Mix 1

o Garcia Mix 2

o Garcia Mix 3

& —0.3f Garcia Mix 4

5 Garcia Mix 5

£ —Garcia Mix 6

= —0.35F —Garcia Depo 1

e —Garcia Depo 2]
——Garcia Depo 3|

_0.4 . . .

0 20 40 60 80 100 120
Grain size (um)
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Garcia's 1994 experiments: Further simplifications?

In these experiments, the grain sizes were small However, the djzf_
(X 100um): Li(d;)~L,(d;). ference 1 — f((d))

may reach more

Difference between composite advection length and simple advection length vs. grain size

' ' ' ' than 10% when the
€-0.08 ] initial  grain  size
2 distribution includes
5 -0.1}f ] :

5 larger grains.
c —-0.15F E
2
8
0>.> -0.2f E
2
£ -0.25f —Garcia Mix 1
o Garcia Mix 2
o Garcia Mix 3
$ -0.3f Garcia Mix 4
5 Garcia Mix 5
£ —Garcia Mix 6
= —0.35[ —Garcia Depo 1
e —Garcia Depo 2]
——Garcia Depo 3|
_0.4 . . .

0 20 40 60 80 100 120
Grain size (um)
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Simple advection length as proxy for composite advection
length

Replace the X —axis (grain size) with the Y'—axis of the Cumulative
Distribution function of grain sizes.

Difference 1-L,(d,)/L.(d,) vs. grain size CDF

[o]
—Garcia Mix 1
~ Garcia Mix 2
& -0.05 Garcia Mix 3
Garcia Mix 4
2 Garcia Mix 5
5 -0.1 —Garcia Mix 6
S —~Garcia Depo 1
4 —Garcia Depo 2|
g—O.lS- ——Garcia Depo 3]
8
3 -0.2]
o
<
£-0.25
@
e
$ -0.3
-
Q
=
= -0.350
o
~0-45 0.2 . .0.4 0.6 ~ 0.8
Grain size CDF: Fraction finer
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Simple advection length as proxy for composite advection

length

Replace the X —axis (grain size) with the Y'—axis of the Cumulative

Distribution function of grain sizes.

Difference 1-L,(d,)/L.(d,) vs. grain size CDF

[o]
—Garcia Mix 1
~ Garcia Mix 2
& -0.05 Garcia Mix 3
Garcia Mix 4
2 Garcia Mix 5
5 -0.1 —Garcia Mix 6
S —~Garcia Depo 1
4 —Garcia Depo 2|
5 -0.15 ——Garcia Depo 3
8
3 -0.2]
o
<
£-0.25¢
@
e
$ -0.3
-
Q
=
= -0.350
o
~0-45 0.2 . .0.4 0.6 ~ 0.8
Grain size CDF: Fraction finer

Similar behavior (drop in
accuracy at mode) has
been found using other
distributions (normal,
lognormal, gamma, etc.)
with the same boundaries,
with a noticeable exception
for uniform distributions,
where the drop in accuracy
is skewed towards coarser
grains.
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(2/5) The 18 distributions: CDF plots, log scale. . .

CDFs for all distributions
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Collapse of small grain sizes on similar power-laws

Grain size (um)

Size of Advection length ranges for all distributions

4
AAIA
geo-av

For d < 324um:

s 24 <0.8840

geo—av
AA
n o < 0.8085
AA
LI v <1.9330
AA
- <
el S 1.3572
AA
Ly <0.5758
These values are reached
for d =20um.
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Collapse of small grain sizes on similar power-laws
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Collapse of small grain sizes on similar power-laws
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Collapse of small grain sizes on similar power-laws
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Collapse of small grain sizes on similar power-laws
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For d < 324um:

s 24 <0.8840

geo—av

m 24 <0.8085

ar—av

m 24 _<13572

- iA <0.5758

These values are reached
for d =20um.



Appendix Profile Data Plots Definitions

Collapse of small grain sizes on similar power-laws
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Collapse of small grain sizes on similar power-laws
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Collapse of small grain sizes on similar power-laws
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Collapse of small grain sizes on similar power-laws
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Size of Advection length ranges for all distributions
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Collapse of small grain sizes on similar power-laws
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Size of Advection length ranges for all distributions
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These values are reached
for d =20um.
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Alternate program “flowchart”

F=1 r="=2

N

‘ Ap=(pu=pa)+(p-py)-c }7

PasPss Py

W, (Stokes)
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Grain size scale

[ mm T & ] Size class Il [ pm T &1 Size class Il
4096 -12 _ E— 62.5 4 _ E—
Boulder Coarse silt
256 -8 31.25 5
Cobble ] Medium silt
64 -6 o 15.63 6 -
Pebble © Fine silt 3
4 -2 7.813 7
Granule Very fine silt
2 -1 _ | — 3.9 8
Very coarse sand Clay
1 0 0.061 14| — | ——

Coarse sand
0.5 1

o .
Medium <and 2 Table: Grain size scale (Silt)
0.25 2
Fine sand
0.125 3
Very fine sand
0.0625 4 _ | —

Table: Grain size scale (Gravel and
sand)
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Definitions

m Capacity: A flow is “at capacity” when the flux of sediment
being transported by the flow at some location is equal to the
sediment flux predicted by the local measure of boundary shear
stress and particle size, fluid and sediment density, etc. at that
location.
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Definitions

m Capacity: A flow is “at capacity” when the flux of sediment
being transported by the flow at some location is equal to the
sediment flux predicted by the local measure of boundary shear
stress and particle size, fluid and sediment density, etc. at that

location.
m “Law of the wall": Relationship #(z) = % . (Zi> with
0
u(z): time-averaged velocity
u,: shear velocity
z: height above bed
zy: roughness parameter, #(z,) =0
x: von Karman's constant, x ~ 0.407
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